Suppr超能文献

Intensity of cross-peaks in hyscore spectra of S = 1/2, I = 1/2 spin systems.

作者信息

Dikanov S A, Tyryshkin A M, Bowman M K

机构信息

Illinois EPR Research Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.

出版信息

J Magn Reson. 2000 Jun;144(2):228-42. doi: 10.1006/jmre.2000.2055.

Abstract

The cross-peak intensity for a S = 1/2, I = 1/2 spin system in two-dimensional HYSCORE spectra of single-crystals and powders is analyzed. There is a fundamental difference between these two cases. For single crystals, the cross-peak intensity is distributed between the two (+, +) and (+, -) quadrants of the hyperfine sublevel correlation (HYSCORE) spectrum by the ratio c(2):s(2) (C. Gemperle, G. Aebli, A. Schweiger, and R. R. Ernst, J. Magn. Reson. 88, 241 (1990)). However, for powder spectra another factor becomes dominant and governs cross-peak intensities in the two quadrants. This factor is the phase interference between modulation from different orientations of the paramagnetic species. This can lead to essentially complete disappearance of the cross-peak in one of the two (+, +) or (+, -) quadrants. In the (+, +) quadrant, cross-peaks oriented parallel to the main (positive) diagonal of the HYSCORE spectrum are suppressed, while the opposite is true in the (+, -) quadrant where cross-peaks nearly perpendicular to the main (negative) diagonal of HYSCORE spectra are suppressed. Analytical expressions are derived for the cross-peak intensity profiles in powder HYSCORE spectra for both axial and nonaxial hyperfine interactions (HFI). The intensity is a product of two terms, one depending only on experimental parameter (tau) and the other only on the spin Hamiltonian. This separation provides a rapid way to choose tau for maximum cross-peak intensity in a region of interest in the spectrum. For axial HFI, the Hamiltonian-dependent term has only one maximum and decreases to zero at the canonical orientations. For nonaxial HFI, this term produces three separate ridges which outline the whole powder lineshape. These three ridges have the majority of the intensity in the HYSCORE spectrum. The intensity profile of each ridge resembles that observed for axial HFI. Each ridge defines two principal values of the HFI similar to the ridges from an axial HFI.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验