Burr T L
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Theor Popul Biol. 2000 May;57(3):297-306. doi: 10.1006/tpbi.2000.1453.
This paper examines a quasi-equilibrium theory of rare alleles for subdivided populations that follow an island-model version of the Wright-Fisher model of evolution. All mutations are assumed to create new alleles. We present four results: (1) conditions for the theory to apply are formally established using properties of the moments of the binomial distribution; (2) approximations currently in the literature can be replaced with exact results that are in better agreement with our simulations; (3) a modified maximum likelihood estimator of migration rate exhibits the same good performance on island-model data or on data simulated from the multinomial mixed with the Dirichlet distribution, and (4) a connection between the rare-allele method and the Ewens Sampling Formula for the infinite-allele mutation model is made. This introduces a new and simpler proof for the expected number of alleles implied by the Ewens Sampling Formula.
本文研究了遵循赖特-费希尔进化模型岛屿模型版本的细分种群稀有等位基因的准平衡理论。假设所有突变都会产生新的等位基因。我们给出了四个结果:(1)利用二项分布矩的性质正式确立了该理论适用的条件;(2)文献中目前的近似结果可以被与我们的模拟结果更吻合的精确结果所取代;(3)迁移率的修正最大似然估计器在岛屿模型数据或从与狄利克雷分布混合的多项分布模拟的数据上表现出同样良好的性能,以及(4)建立了稀有等位基因方法与无限等位基因突变模型的尤恩斯抽样公式之间的联系。这为尤恩斯抽样公式所隐含的等位基因预期数量引入了一个新的更简单的证明。