Suppr超能文献

[从异氟烷到全氟己烷?全氟碳化合物——急性肺衰竭的治疗策略]

[From isoflurane to perfluorohexane? Perfluorocarbons--therapeutic strategies in acute lung failure].

作者信息

Ragaller M, Bleyl J U, Koch T, Albrecht D M

机构信息

Klinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Carl Gustav Carus, Medizinischen Fakultät der Technischen Universität Dresden.

出版信息

Anaesthesist. 2000 Apr;49(4):291-301. doi: 10.1007/s001010050831.

Abstract

The introduction of Perfluorochemicals into medicine and especially into the treatment of severe lung injury is a fascinating scientific task. Many recall the famous experiments from Clark et al. in 1966 when he demonstrated "liquidventilation with perfluorocarbons" in the mammal species for the first time. After this hallmark, perfluorocarbons were subsequently introduced in research of acute lung injury by the techniques of Total- and Partial-Liquid-Ventilation (TLV; PLV). Perfluorocarbons (saturated organofluorids) have unique chemical and physical properties which made them attractive substances for intraalveolar application. The strong C-F bindings in the perfluorocarbon molecules are responsible for their chemical stability, biochemical inertness, high capacity to dissolve respiratory gases, low surface tension and high vapor pressures. Furthermore, the high density of the PFC lead to radio-opacity and their distribution to dependent lung areas. The efficacy of PFC liquid, applied by TLV/PLV has been demonstrated in numerous animal studies using different models of acute lung injury. Currently, several mechanisms of action of perfluorocarbon fluids in acute lung injury are discussed: recruitment of atelectatic alveoli, prevention of endexpiratory collapse of alveoli ("liquid PEEP"), redistribution of perfusion, oxygen transport, surfactant like effects and decrease of inflammation. Since total liquid ventilation has been used only in experimental models of lung injury, partial liquid ventilation has been introduced successfully into clinical trials (phase I-II). However, the results of the first randomised, controlled study of PLV in 90 adult patients suffering from severe respiratory failure (ALI/ARDS) showed no differences between PLV and conventional treatment. Furthermore, the instillation of relatively large amounts of liquid into the lungs poses several technical challenges and may be associated with complications such as liquithoraces, pneumothoraces and hypoxia. Since mammal lungs are evolutionary specialised to gas exchange using atmospheric oxygen, the application of liquids, even if they transport respiratory gases very well is not physiologic. To overcome these unwanted side effects, we developed a technique of perfluorocarbon vaporisation in analogy to the application of inhalation anaesthetic agents. After resolving some technical issues, this application technique was used successfully in an animal model of acute lung injury. Vaporisation of perfluorohexane in a concentration of 18 Vol.% of inspired gas improved significantly oxygenation and lung compliance. Though these results are promising, mechanisms of action, dose-efficacy relation, surfactant-perfluorocarbon interaction or anti-inflammatory effects of vaporised perfluorohexane are still unclear. These questions need to be clarified before this technique can be applied clinically. However, the inhalation of vapor, a technique already familiar to anaesthesiologists should avoid risks of large amounts of fluids in the bronchoalveolar space. Furthermore, this technique can be administered by established anaesthetic equipment with the advantage of exact dosing, continuous monitoring, and demand application in a way near to clinical routine.

摘要

全氟化合物引入医学领域,尤其是用于治疗严重肺损伤,是一项引人入胜的科学任务。许多人回忆起1966年克拉克等人的著名实验,当时他首次在哺乳动物中证明了“全氟化碳液体通气”。在此标志性事件之后,全氟化碳随后通过全液体通气和部分液体通气(TLV;PLV)技术被引入急性肺损伤的研究中。全氟化合物(饱和有机氟化物)具有独特的化学和物理性质,这使其成为肺泡内应用的有吸引力的物质。全氟化合物分子中强大的C-F键赋予了它们化学稳定性、生化惰性、高溶解呼吸气体的能力、低表面张力和高蒸气压。此外,全氟化合物的高密度导致其具有放射不透明性,并使其分布于肺下垂部位。在众多使用不同急性肺损伤模型的动物研究中,已证明通过TLV/PLV应用全氟化合物液体的疗效。目前,人们讨论了全氟化合物液体在急性肺损伤中的几种作用机制:募集萎陷肺泡、防止肺泡呼气末塌陷(“液体呼气末正压”)、灌注再分布、氧运输、类似表面活性剂的作用以及减轻炎症。由于全液体通气仅用于肺损伤的实验模型,部分液体通气已成功引入临床试验(I-II期)。然而,第一项针对90名患有严重呼吸衰竭(ALI/ARDS)的成年患者的PLV随机对照研究结果显示,PLV与传统治疗之间没有差异。此外,向肺内滴注相对大量的液体带来了几个技术挑战,并且可能与诸如胸腔积液、气胸和低氧血症等并发症相关。由于哺乳动物的肺在进化上专门用于利用大气中的氧气进行气体交换,即使液体能很好地运输呼吸气体,液体的应用也不符合生理。为了克服这些不良副作用,我们开发了一种类似于吸入麻醉剂应用的全氟化合物汽化技术。解决了一些技术问题后,这种应用技术在急性肺损伤动物模型中成功使用。在吸入气体中18体积%浓度的全氟己烷汽化显著改善了氧合和肺顺应性。尽管这些结果很有前景,但汽化全氟己烷的作用机制、剂量-疗效关系、表面活性剂-全氟化合物相互作用或抗炎作用仍不清楚。在该技术能够临床应用之前,这些问题需要得到澄清。然而,吸入蒸汽这种麻醉医生已经熟悉的技术应可避免支气管肺泡空间内大量液体带来的风险。此外,该技术可通过既定的麻醉设备进行给药,具有精确给药、连续监测以及按需应用的优点,方式接近临床常规。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验