van Eeden S F, Klut M E, Leal M A, Alexander J, Zonis Z, Skippen P
University of British Columbia, Pulmonary Research Laboratory, St. Paul's Hospital, and Children's Hospital, Vancouver, British Columbia, Canada.
Am J Respir Cell Mol Biol. 2000 Apr;22(4):441-50. doi: 10.1165/ajrcmb.22.4.3717.
Liquid ventilation using perfluorocarbon has been shown to improve gas exchange in animal models of acute lung injury as well as in children with acute respiratory distress syndrome. This study was designed to define structural features of lung injury following partial liquid ventilation (PLV) using light and transmission electron microscopy in a rabbit model of acute respiratory distress. Animals were treated with either conventional mechanical ventilation (CMV-gas) (n = 6) or PLV (n = 5) for 4 h after the induction of acute lung injury with saline lavage. Control animals were killed after the lung injury. PLV significantly improved alveolar-arterial oxygen tension and the oxygen index compared with CMV (P < 0.05). Morphometric studies using light microscopy show less alveolar hemorrhage, less edema, and fewer hyaline membranes in the PLV group (P < 0.05). Polymorphonuclear leukocyte sequestration in lung capillaries (11.4 +/- 1.5 versus 19.2 +/- 3 x 10(8)/ml, P < 0.05, PLV versus CMV) and migration into airspaces (3.1 +/- 1.2 versus 4.5 +/- 1.1 x 10(8)/ml, P < 0.05, PLV versus CMV) were lower in the gravity-dependent lung regions. There were fewer alveolar macrophages in the PLV group compared with other groups (P < 0.05). Fluorescence microscopy analysis shows fewer type II alveolar epithelial cells in the CMV group and brighter type II cells in the PLV group. Transmission electron microscopy studies show more alveolar wall damage in the CMV group, with type II cells detached from their basement membrane with fewer surfactant-containing lamellar bodies. We conclude that quantitative histologic analysis shows less lung damage and inflammation when perfluorocarbon is combined with CMV in the management of acute respiratory distress syndrome.
在急性肺损伤动物模型以及患有急性呼吸窘迫综合征的儿童中,使用全氟化碳进行液体通气已被证明可改善气体交换。本研究旨在通过光镜和透射电子显微镜确定在急性呼吸窘迫兔模型中部分液体通气(PLV)后肺损伤的结构特征。在用盐水灌洗诱导急性肺损伤后,动物接受传统机械通气(CMV-气体)(n = 6)或PLV(n = 5)治疗4小时。对照动物在肺损伤后处死。与CMV相比,PLV显著改善了肺泡-动脉氧分压和氧合指数(P < 0.05)。用光镜进行的形态计量学研究显示,PLV组的肺泡出血、水肿和透明膜较少(P < 0.05)。重力依赖肺区域肺毛细血管中的多形核白细胞滞留(11.4±1.5对19.2±3×10⁸/ml,P < 0.05,PLV对CMV)和迁移到气腔中的数量(3.1±1.2对4.5±1.1×10⁸/ml,P < 0.05,PLV对CMV)较低。与其他组相比,PLV组的肺泡巨噬细胞较少(P < 0.05)。荧光显微镜分析显示,CMV组的II型肺泡上皮细胞较少,而PLV组的II型细胞较亮。透射电子显微镜研究显示,CMV组的肺泡壁损伤更多,II型细胞从基底膜脱离,含表面活性物质的板层小体较少。我们得出结论,定量组织学分析表明,在急性呼吸窘迫综合征的管理中,全氟化碳与CMV联合使用时,肺损伤和炎症较少。