Repik A, Rebbapragada A, Johnson M S, Haznedar J O, Zhulin I B, Taylor B L
Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, 92350 USA.
Mol Microbiol. 2000 May;36(4):806-16. doi: 10.1046/j.1365-2958.2000.01910.x.
PAS domains sense oxygen, redox potential and light, and are implicated in behaviour, circadian rhythmicity, development and metabolic regulation. Although PAS domains are widespread in archaea, bacteria and eukaryota, the mechanism of signal transduction has been elucidated only for the bacterial photo sensor PYP and oxygen sensor FixL. We investigated the signalling mechanism in the PAS domain of Aer, the redox potential sensor and aerotaxis transducer in Escherichia coli. Forty-two residues in Aer were substituted using cysteine-replacement mutagenesis. Eight mutations resulted in a null phenotype for aerotaxis, the behavioural response to oxygen. Four of them also led to the loss of the non-covalently bound FAD cofactor. Three mutant Aer proteins, N34C, F66C and N85C, transmitted a constant signal-on bias. One mutation, Y111C, inverted signalling by the transducer so that positive stimuli produced negative signals and vice versa. Residues critical for signalling were mapped onto a three-dimensional model of the Aer PAS domain, and an FAD-binding site and 'active site' for signal transduction are proposed.
PAS结构域能感知氧气、氧化还原电位和光,并参与行为、昼夜节律、发育和代谢调节。尽管PAS结构域在古细菌、细菌和真核生物中广泛存在,但仅对细菌光传感器PYP和氧气传感器FixL的信号转导机制进行了阐明。我们研究了大肠杆菌中氧化还原电位传感器兼趋氧性转导蛋白Aer的PAS结构域中的信号转导机制。利用半胱氨酸替代诱变对Aer中的42个残基进行了替换。8个突变导致趋氧性出现无效表型,即对氧气的行为反应。其中4个突变还导致非共价结合的FAD辅因子丢失。三种突变型Aer蛋白,N34C、F66C和N85C,传递持续的信号开启偏向。一个突变Y111C使转导蛋白的信号转导发生反转,使得正向刺激产生负向信号,反之亦然。对信号转导至关重要的残基被定位到Aer PAS结构域的三维模型上,并提出了一个FAD结合位点和信号转导的“活性位点”。