Pérez Padilla J R, Vázquez García J C
Instituto Nacional de Enfermedades Respiratorias.
Rev Invest Clin. 2000 Mar-Apr;52(2):148-55.
We calculated reference values for arterial blood gases at different altitudes in Mexico assuming that sea level PaCO2 is 40 Torr, and in Mexico City (2.24 km. above the sea level) is 31.13 Torr, average of reported reference values. With the previous two points, it is possible to calculate a linear regression: PaCO2 = 40-3.96(altitude in km.). The equation is very similar to that calculated from reports in alveolar gas in North-Americans (Fitzgerald < 5 km): PACO2 = 39.3-3.11(altitude in km), and from subjects acclimatized to acute altitude exposure (< 5 km): PACO2 = 38.3-2.5 (altitude in km). It is also similar to a alinear equation that can be calculated assuming that hyperventilation in permanent habitants of moderate altitudes is inversely proportional to inspired molar concentration of O2: PaCO2 = PIO2/3.74. On the other hand, the equation is very different than that obtained from Andean natives (Hurtado): PaCO2 = 40.4-1.35(altitude in km). The proposed linear equation for Mexico gives very similar results (< 2 Torr difference) than a complex curvilinear equation by Morris et al. appropriate only up to 2.3 km. Evidence from acute exposure to altitude (acclimatized) and in North-Americans (alveolar gas) supports a reasonably accurate linear relationship up to 4 km. and also that the increase in ventilation in response to moderate altitudes in adult permanent residents is inversely proportional to molar concentration of O2. PAO2 was calculated with alveolar gas equation and resting the P(A-a)O2 we obtained PaO2. In conclusion, according to reference values in Mexico City, PaCO2 decreases about 4 Torr per km of altitude above the sea level. The decrease is similar to that reported in North-Americans and in acute exposure to altitude (acclimatized), but much less than that reported in native Peruvians. Ventilation is inversely proportional to the molar concentration of O2 at least up to an altitude where SaO2 is at or above 90%.
我们假设海平面的动脉血二氧化碳分压(PaCO2)为40托,而在墨西哥城(海拔2.24千米)为31.13托(报告的参考值平均值),据此计算了墨西哥不同海拔高度的动脉血气参考值。根据以上两点,可以计算出线性回归方程:PaCO2 = 40 - 3.96(海拔高度,单位为千米)。该方程与根据北美人群肺泡气报告计算得出的方程(Fitzgerald,海拔低于5千米):肺泡气二氧化碳分压(PACO2)= 39.3 - 3.11(海拔高度,单位为千米),以及急性暴露于高原(海拔低于5千米)的受试者的方程:PACO2 = 38.3 - 2.5(海拔高度,单位为千米)非常相似。它也类似于一个线性方程,该方程可通过假设中度海拔地区常住居民的过度通气与吸入氧气的摩尔浓度成反比来计算:PaCO2 = 吸入气氧分压(PIO2)/3.74。另一方面,该方程与从安第斯原住民(Hurtado)获得的方程有很大不同:PaCO2 = 40.4 - 1.35(海拔高度,单位为千米)。为墨西哥提出的线性方程与Morris等人提出的仅适用于海拔2.3千米以下的复杂曲线方程相比,结果非常相似(差值小于2托)。急性高原暴露(适应后)和北美人群(肺泡气)的证据支持在海拔4千米以下存在合理准确的线性关系,并且成年常住居民对中度海拔的通气增加与氧气的摩尔浓度成反比。动脉血氧分压(PAO2)通过肺泡气方程计算得出,并减去肺泡 - 动脉血氧分压差(P(A - a)O2)得到动脉血氧分压(PaO2)。总之,根据墨西哥城的参考值,海拔每升高1千米,PaCO2下降约4托。这种下降与北美人群以及急性高原暴露(适应后)报告的情况相似,但远低于秘鲁原住民报告的下降幅度。至少在动脉血氧饱和度(SaO2)达到或高于90%的海拔高度之前,通气与氧气的摩尔浓度成反比。