Suppr超能文献

维管植物的生殖系统与进化

Reproductive systems and evolution in vascular plants.

作者信息

Holsinger K E

机构信息

Department of Ecology and Evolutionary Biology, U-3043, University of Connecticut, Storrs, CT 06269-3043, USA.

出版信息

Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7037-42. doi: 10.1073/pnas.97.13.7037.

Abstract

Differences in the frequency with which offspring are produced asexually, through self-fertilization and through sexual outcrossing, are a predominant influence on the genetic structure of plant populations. Selfers and asexuals have fewer genotypes within populations than outcrossers with similar allele frequencies, and more genetic diversity in selfers and asexuals is a result of differences among populations than in sexual outcrossers. As a result of reduced levels of diversity, selfers and asexuals may be less able to respond adaptively to changing environments, and because genotypes are not mixed across family lineages, their populations may accumulate deleterious mutations more rapidly. Such differences suggest that selfing and asexual lineages may be evolutionarily short-lived and could explain why they often seem to be of recent origin. Nonetheless, the origin and maintenance of different reproductive modes must be linked to individual-level properties of survival and reproduction. Sexual outcrossers suffer from a cost of outcrossing that arises because they do not contribute to selfed or asexual progeny, whereas selfers and asexuals may contribute to outcrossed progeny. Selfing and asexual reproduction also may allow reproduction when circumstances reduce opportunities for a union of gametes produced by different individuals, a phenomenon known as reproductive assurance. Both the cost of outcrossing and reproductive assurance lead to an over-representation of selfers and asexuals in newly formed progeny, and unless sexual outcrossers are more likely to survive and reproduce, they eventually will be displaced from populations in which a selfing or asexual variant arises.

摘要

通过自体受精和有性异交进行无性繁殖产生后代的频率差异,是影响植物种群遗传结构的主要因素。与具有相似等位基因频率的异交植物相比,自交植物和无性繁殖植物种群内的基因型较少,并且自交植物和无性繁殖植物中更多的遗传多样性是种群间差异的结果,而非有性异交植物。由于多样性水平降低,自交植物和无性繁殖植物可能较难对不断变化的环境做出适应性反应,并且由于基因型不会在不同家族谱系间混合,它们的种群可能会更快地积累有害突变。这些差异表明,自交和无性繁殖谱系在进化上可能寿命较短,这也可以解释为什么它们似乎往往是近期才出现的。尽管如此,不同繁殖方式的起源和维持必定与生存和繁殖的个体水平特性相关。有性异交植物会遭受异交成本,因为它们不会产生自交或无性繁殖后代,而自交植物和无性繁殖植物可能会产生异交后代。当环境减少了不同个体产生的配子结合的机会时,自交和无性繁殖也可能实现繁殖,这种现象被称为繁殖保障。异交成本和繁殖保障都会导致自交植物和无性繁殖植物在新形成的后代中占比过高,除非有性异交植物更有可能生存和繁殖,否则它们最终将被出现自交或无性变异的种群所取代。

相似文献

1
Reproductive systems and evolution in vascular plants.
Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7037-42. doi: 10.1073/pnas.97.13.7037.
3
Selfing, adaptation and background selection in finite populations.
J Evol Biol. 2014 Jul;27(7):1360-71. doi: 10.1111/jeb.12343. Epub 2014 Mar 7.
4
Effects of reproductive compensation, gamete discounting and reproductive assurance on mating-system diversity in hermaphrodites.
Evolution. 2008 Jan;62(1):157-72. doi: 10.1111/j.1558-5646.2007.00272.x. Epub 2007 Dec 6.
6
Mutation accumulation in a selfing population: consequences of different mutation rates between selfers and outcrossers.
PLoS One. 2012;7(3):e33541. doi: 10.1371/journal.pone.0033541. Epub 2012 Mar 20.

引用本文的文献

1
Mixed mating system and intraspecific variation in lizard pollination of (L.) Pauquy.
AoB Plants. 2025 Feb 15;17(2):plaf008. doi: 10.1093/aobpla/plaf008. eCollection 2025 Feb.
3
Rapid detection of RNase-based self-incompatibility in Lysimachia monelli (Primulaceae).
Am J Bot. 2025 Jan;112(1):e16449. doi: 10.1002/ajb2.16449. Epub 2025 Jan 13.
4
Loss of pollinator diversity consistently reduces reproductive success for wild and cultivated plants.
Nat Ecol Evol. 2025 Feb;9(2):296-313. doi: 10.1038/s41559-024-02595-2. Epub 2024 Dec 11.
6
Dominance of non-wetland-dependent pollinators in a plant community in a small natural wetland in Shimane, Japan.
J Plant Res. 2024 Mar;137(2):191-201. doi: 10.1007/s10265-023-01518-9. Epub 2024 Jan 11.
9
Seed type and origin-dependent seedling emergence patterns in , a species commonly used in grassland restoration.
Plant Environ Interact. 2023 Apr 1;4(2):97-113. doi: 10.1002/pei3.10105. eCollection 2023 Apr.
10
Opposing effects of plant traits on diversification.
iScience. 2023 Mar 9;26(4):106362. doi: 10.1016/j.isci.2023.106362. eCollection 2023 Apr 21.

本文引用的文献

1
INCIDENCE OF MONOECY AND DICHOGAMY IN RELATION TO SELF-FERTILIZATION IN ANGIOSPERMS.
Am J Bot. 1993 May;80(5):557-560. doi: 10.1002/j.1537-2197.1993.tb13840.x.
2
INBREEDING DEPRESSION DOESN'T MATTER: THE GENETIC BASIS OF MATING-SYSTEM EVOLUTION.
Evolution. 1988 Nov;42(6):1235-1244. doi: 10.1111/j.1558-5646.1988.tb04183.x.
4
ABSENCE OF POLLEN DISCOUNTING IN A GENOTYPE OF IPOMOEA PURPUREA EXHIBITING INCREASED SELFING.
Evolution. 1993 Dec;47(6):1688-1695. doi: 10.1111/j.1558-5646.1993.tb01261.x.
5
MULLER'S RATCHET AND MUTATIONAL MELTDOWNS.
Evolution. 1993 Dec;47(6):1744-1757. doi: 10.1111/j.1558-5646.1993.tb01266.x.
6
MUTATION LOAD AND THE SURVIVAL OF SMALL POPULATIONS.
Evolution. 1990 Nov;44(7):1725-1737. doi: 10.1111/j.1558-5646.1990.tb05244.x.
9
QUANTITATIVE GENETICS IN PLANTS: THE EFFECT OF THE BREEDING SYSTEM ON GENETIC VARIABILITY.
Evolution. 1995 Oct;49(5):911-920. doi: 10.1111/j.1558-5646.1995.tb02326.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验