Suppr超能文献

通过基于标志物的血清转化时间估计将现患病例纳入HIV/AIDS自然史研究

On the inclusion of prevalent cases in HIV/AIDS natural history studies through a marker-based estimate of time since seroconversion.

作者信息

Geskus R B

机构信息

Municipal Health Service, Division of Public Health and Environment, Nieuwe Achtergracht 100, 1018 WT Amsterdam, The Netherlands.

出版信息

Stat Med. 2000 Jul 15;19(13):1753-69. doi: 10.1002/1097-0258(20000715)19:13<1753::aid-sim487>3.0.co;2-f.

Abstract

In most cohort studies of HIV infection and AIDS, seroprevalent cases provide a substantial amount of information. Inclusion of these people in natural history studies requires a fairly unbiased method to estimate their seroconversion distribution. When a cohort-based estimate is not feasible, an alternative is to estimate individual seroconversion distributions, based on marker values at entry. In this paper, a non-parametric marker-based estimation method is developed. The method is applied to data from the Amsterdam cohort study on homosexual men. For seroprevalent cases who entered the study between October 1984 and April 1985, individual seroconversion distributions are estimated based on their first measured CD4 count. In subsequent survival analyses, dates of seroconversion are estimated via conditional mean imputation. Inclusion of these seroprevalent cases greatly improves the quality of the data. Age at seroconversion is a significant cofactor for disease progression, a result not found when analysis is restricted to those who seroconvert. To incorporate the uncertainty in the imputed date of seroconversion, a bootstrap procedure is developed for the computation of p-values and confidence intervals. In our analyses, standard procedures, which ignore the uncertainty in the imputed date of seroconversion, perform almost as well.

摘要

在大多数关于HIV感染和艾滋病的队列研究中,血清阳性病例提供了大量信息。将这些人纳入自然史研究需要一种相当无偏的方法来估计他们的血清转换分布。当基于队列的估计不可行时,另一种方法是根据入组时的标志物值来估计个体血清转换分布。本文开发了一种基于标志物的非参数估计方法。该方法应用于阿姆斯特丹同性恋男性队列研究的数据。对于1984年10月至1985年4月期间进入研究的血清阳性病例,根据他们首次测量的CD4计数估计个体血清转换分布。在随后的生存分析中,通过条件均值插补估计血清转换日期。纳入这些血清阳性病例大大提高了数据质量。血清转换时的年龄是疾病进展的一个重要协变量,当分析仅限于血清转换者时未发现这一结果。为了纳入血清转换日期插补中的不确定性,开发了一种自举程序来计算p值和置信区间。在我们的分析中,忽略血清转换日期插补中不确定性的标准程序表现几乎一样好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验