Suppr超能文献

重复测量数据分析中的协方差结构建模。

Modelling covariance structure in the analysis of repeated measures data.

作者信息

Littell R C, Pendergast J, Natarajan R

机构信息

Department of Statistics, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.

出版信息

Stat Med. 2000 Jul 15;19(13):1793-819. doi: 10.1002/1097-0258(20000715)19:13<1793::aid-sim482>3.0.co;2-q.

Abstract

The term 'repeated measures' refers to data with multiple observations on the same sampling unit. In most cases, the multiple observations are taken over time, but they could be over space. It is usually plausible to assume that observations on the same unit are correlated. Hence, statistical analysis of repeated measures data must address the issue of covariation between measures on the same unit. Until recently, analysis techniques available in computer software only offered the user limited and inadequate choices. One choice was to ignore covariance structure and make invalid assumptions. Another was to avoid the covariance structure issue by analysing transformed data or making adjustments to otherwise inadequate analyses. Ignoring covariance structure may result in erroneous inference, and avoiding it may result in inefficient inference. Recently available mixed model methodology permits the covariance structure to be incorporated into the statistical model. The MIXED procedure of the SAS((R)) System provides a rich selection of covariance structures through the RANDOM and REPEATED statements. Modelling the covariance structure is a major hurdle in the use of PROC MIXED. However, once the covariance structure is modelled, inference about fixed effects proceeds essentially as when using PROC GLM. An example from the pharmaceutical industry is used to illustrate how to choose a covariance structure. The example also illustrates the effects of choice of covariance structure on tests and estimates of fixed effects. In many situations, estimates of linear combinations are invariant with respect to covariance structure, yet standard errors of the estimates may still depend on the covariance structure.

摘要

术语“重复测量”指的是对同一抽样单元进行多次观测得到的数据。在大多数情况下,多次观测是随时间进行的,但也可能是随空间进行的。通常可以合理地假设同一单元上的观测值是相关的。因此,重复测量数据的统计分析必须解决同一单元上测量值之间的协变问题。直到最近,计算机软件中可用的分析技术仅为用户提供了有限且不充分的选择。一种选择是忽略协方差结构并做出无效假设。另一种是通过分析变换后的数据或对其他不充分的分析进行调整来避免协方差结构问题。忽略协方差结构可能导致错误的推断,而避免它可能导致低效的推断。最近可用的混合模型方法允许将协方差结构纳入统计模型。SAS((R)) 系统的 MIXED 过程通过 RANDOM 和 REPEATED 语句提供了丰富的协方差结构选择。对协方差结构进行建模是使用 PROC MIXED 的一个主要障碍。然而,一旦对协方差结构进行了建模,关于固定效应的推断基本上与使用 PROC GLM 时相同。本文使用制药行业的一个例子来说明如何选择协方差结构。该例子还说明了协方差结构的选择对固定效应的检验和估计的影响。在许多情况下,线性组合的估计相对于协方差结构是不变的,但估计的标准误差可能仍然取决于协方差结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验