Human Development and Family Studies, The Pennsylvania State University, University Park, PA 16802, USA.
Psychol Methods. 2012 Mar;17(1):15-30. doi: 10.1037/a0026971. Epub 2012 Jan 16.
With increasing popularity, growth curve modeling is more and more often considered as the 1st choice for analyzing longitudinal data. Although the growth curve approach is often a good choice, other modeling strategies may more directly answer questions of interest. It is common to see researchers fit growth curve models without considering alterative modeling strategies. In this article we compare 3 approaches for analyzing longitudinal data: repeated measures analysis of variance, covariance pattern models, and growth curve models. As all are members of the general linear mixed model family, they represent somewhat different assumptions about the way individuals change. These assumptions result in different patterns of covariation among the residuals around the fixed effects. In this article, we first indicate the kinds of data that are appropriately modeled by each and use real data examples to demonstrate possible problems associated with the blanket selection of the growth curve model. We then present a simulation that indicates the utility of Akaike information criterion and Bayesian information criterion in the selection of a proper residual covariance structure. The results cast doubt on the popular practice of automatically using growth curve modeling for longitudinal data without comparing the fit of different models. Finally, we provide some practical advice for assessing mean changes in the presence of correlated data.
随着普及程度的提高,增长曲线模型越来越多地被视为分析纵向数据的首选方法。尽管增长曲线方法通常是一个不错的选择,但其他建模策略可能更直接地回答感兴趣的问题。研究人员经常拟合增长曲线模型而不考虑替代建模策略。在本文中,我们比较了分析纵向数据的 3 种方法:重复测量方差分析、协方差模式模型和增长曲线模型。由于它们都是广义线性混合模型家族的成员,因此它们对个体变化的方式有一些不同的假设。这些假设导致固定效应周围残差之间的协变模式不同。在本文中,我们首先指出了每种方法适合建模的数据类型,并使用实际数据示例来说明与盲目选择增长曲线模型相关的可能问题。然后,我们进行了一项模拟,表明了赤池信息量准则和贝叶斯信息量准则在选择适当的残差协方差结构中的效用。结果对流行的做法提出了质疑,即在没有比较不同模型拟合度的情况下,将增长曲线模型自动用于纵向数据。最后,我们提供了一些在存在相关数据的情况下评估均值变化的实用建议。