Suppr超能文献

一种用于对cDNA指纹图谱进行聚类的算法。

An algorithm for clustering cDNA fingerprints.

作者信息

Hartuv E, Schmitt A O, Lange J, Meier-Ewert S, Lehrach H, Shamir R

机构信息

Department of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel.

出版信息

Genomics. 2000 Jun 15;66(3):249-56. doi: 10.1006/geno.2000.6187.

Abstract

Clustering large data sets is a central challenge in gene expression analysis. The hybridization of synthetic oligonucleotides to arrayed cDNAs yields a fingerprint for each cDNA clone. Cluster analysis of these fingerprints can identify clones corresponding to the same gene. We have developed a novel algorithm for cluster analysis that is based on graph theoretic techniques. Unlike other methods, it does not assume that the clusters are hierarchically structured and does not require prior knowledge on the number of clusters. In tests with simulated libraries the algorithm outperformed the Greedy method and demonstrated high speed and robustness to high error rate. Good solution quality was also obtained in a blind test on real cDNA fingerprints.

摘要

对大型数据集进行聚类是基因表达分析中的一项核心挑战。合成寡核苷酸与阵列cDNA的杂交可为每个cDNA克隆生成一个指纹图谱。对这些指纹图谱进行聚类分析可以识别出对应于同一基因的克隆。我们开发了一种基于图论技术的新型聚类分析算法。与其他方法不同,它不假定聚类具有层次结构,也不需要关于聚类数量的先验知识。在对模拟文库的测试中,该算法的性能优于贪婪方法,并在高错误率情况下表现出高速性和稳健性。在对真实cDNA指纹图谱的盲测中也获得了良好的解决方案质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验