Suppr超能文献

Characterization of five novel human genes in the 11q13-q22 region.

作者信息

O'Brien K P, Tapia-Páez I, Ståhle-Bäckdahl M, Kedra D, Dumanski J P

机构信息

Department of Medicine, Karolinska Hospital, Stockholm, S-171 76, Sweden.

出版信息

Biochem Biophys Res Commun. 2000 Jun 24;273(1):90-4. doi: 10.1006/bbrc.2000.2910.

Abstract

The redundancy of sequences in dbEST has approached a level where contiguous cDNA sequences of genes can be assembled, without the need to physically handle the clones from which the ESTs are derived. This is termed EST based in silico gene cloning. With the availability of sequence chromatogram files for a subset of ESTs, the quality of EST sequences can be ascertained accurately and used in contig assembly. In this report, we performed a study using this approach and isolated five novel human genes, C11orf1-C11orf5, in the 11q13-q22 region. The full open reading frames of these genes were determined by comparison with their orthologs, of which four mouse orthologs were isolated (c11orf1, c11orf2, c11orf3 and c11orf5). These genes were then analyzed using several proteomics tools. Both C11orf1 and C11orf2 are nuclear proteins with no other distinguishing features. C11orf3 is a cytoplasmic protein containing an ATP/GTP binding site, a signal peptide located in the N-terminus and a similarity to the C. elegans protein "Probable ARP 2/3 complex 20kD subunit." C11orf4 is a peptide which displays four putative transmembrane domains and is predicted to have a cytoplasmic localization. It contains signal peptides at the N- and C-termini. C11orf5 is a putative nuclear protein displaying a central coiled coil domain. Here, we propose that this purely EST-based cloning approach can be used by modestly sized laboratories to rapidly and accurately characterize and map a significant number of human genes without the need of further sequencing.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验