Suppr超能文献

具有缺失协变量的条件和无条件分类回归模型。

Conditional and unconditional categorical regression models with missing covariates.

作者信息

Satten G A, Carroll R J

机构信息

Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.

出版信息

Biometrics. 2000 Jun;56(2):384-8. doi: 10.1111/j.0006-341x.2000.00384.x.

Abstract

We consider methods for analyzing categorical regression models when some covariates (Z) are completely observed but other covariates (X) are missing for some subjects. When data on X are missing at random (i.e., when the probability that X is observed does not depend on the value of X itself), we present a likelihood approach for the observed data that allows the same nuisance parameters to be eliminated in a conditional analysis as when data are complete. An example of a matched case-control study is used to demonstrate our approach.

摘要

我们考虑在某些协变量(Z)被完全观测到,但其他协变量(X)在部分受试者中缺失的情况下,分析分类回归模型的方法。当X的数据是随机缺失时(即,X被观测到的概率不依赖于X自身的值),我们提出一种针对观测数据的似然方法,该方法在条件分析中允许消除与数据完整时相同的干扰参数。通过一个匹配病例对照研究的例子来展示我们的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验