Suppr超能文献

具有协变量的多元不完全数据的模式混合模型。

Pattern-mixture models for multivariate incomplete data with covariates.

作者信息

Little R J, Wang Y

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor 48109, USA.

出版信息

Biometrics. 1996 Mar;52(1):98-111.

PMID:8934587
Abstract

Pattern-mixture models stratify incomplete data by the pattern of missing values and formulate distinct models within each stratum. Pattern-mixture models are developed for analyzing a random sample on continuous variables y(1), y(2) when values of y(2) are nonrandomly missing. Methods for scalar y(1) and y(2) are here generalized to vector y(1) and y(2) with additional fixed covariates x. Parameters in these models are identified by alternative assumptions about the missing-data mechanism. Models may be underidentified (in which case additional assumptions are needed), just-identified, or overidentified. Maximum likelihood and Bayesian methods are developed for the latter two situations, using the EM and SEM algorithms, direct and interactive simulation methods. The methods are illustrated on a data set involving alternative dosage regimens for the treatment of schizophrenia using haloperidol and on a regression example. Sensitivity to alternative assumptions about the missing-data mechanism is assessed, and the new methods are compared with complete-case analysis and maximum likelihood for a probit selection model.

摘要

模式混合模型通过缺失值模式对不完全数据进行分层,并在每个分层内构建不同的模型。模式混合模型用于分析连续变量y(1)、y(2)的随机样本,其中y(2)的值存在非随机缺失。标量y(1)和y(2)的方法在此推广到具有附加固定协变量x的向量y(1)和y(2)。这些模型中的参数通过关于缺失数据机制的替代假设来识别。模型可能识别不足(在这种情况下需要额外的假设)、恰好识别或识别过度。针对后两种情况开发了最大似然法和贝叶斯方法,使用期望最大化(EM)和半期望最大化(SEM)算法、直接和交互式模拟方法。这些方法在一个涉及使用氟哌啶醇治疗精神分裂症的替代给药方案的数据集以及一个回归示例中进行了说明。评估了对缺失数据机制的替代假设的敏感性,并将新方法与完全病例分析以及概率单位选择模型的最大似然法进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验