Tchernichovski O, Nottebohm F, Ho CE, Pesaran B, Mitra PP
Field Research Center, The Rockefeller University
Anim Behav. 2000 Jun;59(6):1167-1176. doi: 10.1006/anbe.1999.1416.
Assessment of vocal imitation requires a widely accepted way of describing and measuring any similarities between the song of a tutor and that of its pupil. Quantifying the similarity between two songs, however, can be difficult and fraught with subjective bias. We present a fully automated procedure that measures parametrically the similarity between songs. We tested its performance on a large database of zebra finch, Taeniopygia guttata, songs. The procedure uses an analytical framework of modern spectral analysis to characterize the acoustic structure of a song. This analysis provides a superior sound spectrogram that is then reduced to a set of simple acoustic features. Based on these features, the procedure detects similar sections between songs automatically. In addition, the procedure can be used to examine: (1) imitation accuracy across acoustic features; (2) song development; (3) the effect of brain lesions on specific song features; and (4) variability across different renditions of a song or a call produced by the same individual, across individuals and across populations. By making the procedure available we hope to promote the adoption of a standard, automated method for measuring similarity between songs or calls. Copyright 2000 The Association for the Study of Animal Behaviour.
对声音模仿的评估需要一种被广泛接受的方式来描述和衡量导师的歌声与其学生的歌声之间的任何相似之处。然而,量化两首歌曲之间的相似性可能很困难,并且充满主观偏见。我们提出了一种全自动程序,该程序可以参数化地测量歌曲之间的相似性。我们在一个大型斑胸草雀(Taeniopygia guttata)歌曲数据库上测试了它的性能。该程序使用现代频谱分析的分析框架来表征歌曲的声学结构。这种分析提供了一个优质的声谱图,然后将其简化为一组简单的声学特征。基于这些特征,该程序会自动检测歌曲之间的相似部分。此外,该程序可用于检查:(1)跨声学特征的模仿准确性;(2)歌曲发展;(3)脑部病变对特定歌曲特征的影响;以及(4)同一个体、不同个体和不同群体所产生的歌曲或叫声的不同演唱版本之间的变异性。通过提供该程序,我们希望推动采用一种标准的自动化方法来测量歌曲或叫声之间的相似性。版权所有2000年动物行为研究协会。