Suppr超能文献

小鼠发育速率的年龄特异性选择对大脑和肝脏的细胞影响。

Cellular consequences in the brain and liver of age-specific selection for rate of development in mice.

作者信息

Atchley W R, Wei R, Crenshaw P

机构信息

Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695-7614, USA.

出版信息

Genetics. 2000 Jul;155(3):1347-57. doi: 10.1093/genetics/155.3.1347.

Abstract

Changes in cell number (hyperplasia) and cell size (hypertrophy) in the brain and liver are described for mice subjected to 24 generations of age-specific restricted index selection for rate of development in body weight. One selection treatment (E) altered rate of development between birth and 10 days of age, another treatment (L) involved changes in rate of development between 28 and 56 days of age, while a third control treatment (C) involved random selection. Each selection treatment was replicated three times. These age-specific selection treatments focused on intervals during ontogeny when different developmental processes (hypertrophy or hyperplasia) were more predominant in the control of growth. Significant changes in brain and liver weight occurred at both 28 and 70 days of age. Early selection (E) generated significant changes in the number of cells in the brain while later selection (L) had no effect since the brain had stopped growth before selection was initiated. For the liver, early and late selection produced significant effects on both cell number and cell size. These results describe the dynamic and multidimensional aspects of selection in terms of its ability to alter different cellular and developmental components of complex morphological traits.

摘要

对于因体重发育速率而接受了24代年龄特异性限制指数选择的小鼠,描述了其大脑和肝脏中细胞数量(增生)和细胞大小(肥大)的变化。一种选择处理(E)改变了出生至10日龄之间的发育速率,另一种处理(L)涉及28至56日龄之间发育速率的变化,而第三种对照处理(C)涉及随机选择。每种选择处理重复三次。这些年龄特异性选择处理聚焦于个体发育过程中不同发育过程(肥大或增生)在生长控制中更为突出的时间段。在28日龄和70日龄时,大脑和肝脏重量均发生了显著变化。早期选择(E)使大脑中的细胞数量产生了显著变化,而后期选择(L)没有影响,因为在开始选择之前大脑已经停止生长。对于肝脏,早期和后期选择对细胞数量和细胞大小均产生了显著影响。这些结果从其改变复杂形态特征的不同细胞和发育成分的能力方面,描述了选择的动态和多维度特征。

相似文献

1
2
Altering developmental trajectories in mice by restricted index selection.
Genetics. 1997 Jun;146(2):629-40. doi: 10.1093/genetics/146.2.629.
3
Body weight and tail length divergence in mice selected for rate of development.
J Exp Zool. 2000 Aug 15;288(2):151-64. doi: 10.1002/1097-010x(20000815)288:2<151::aid-jez6>3.0.co;2-6.
7
Hyperplasic and hypertrophic growth in brain, liver and muscle of undernourished suckled pigs.
J Anim Sci. 1977 Dec;45(6):1346-52. doi: 10.2527/jas1977.4561346x.

引用本文的文献

1
Phenotypic and developmental dissection of an instance of the island rule.
Evolution. 2025 Jul 18;79(7):1199-1215. doi: 10.1093/evolut/qpaf053.
2
Phenotypic and Developmental Dissection of an Instance of the Island Rule.
bioRxiv. 2025 Jan 24:2025.01.22.634334. doi: 10.1101/2025.01.22.634334.
3
How Metabolic Rate Relates to Cell Size.
Biology (Basel). 2022 Jul 25;11(8):1106. doi: 10.3390/biology11081106.
4
Giant Island Mice Exhibit Widespread Gene Expression Changes in Key Metabolic Organs.
Genome Biol Evol. 2020 Aug 1;12(8):1277-1301. doi: 10.1093/gbe/evaa118.
6
Genetics of Rapid and Extreme Size Evolution in Island Mice.
Genetics. 2015 Sep;201(1):213-28. doi: 10.1534/genetics.115.177790. Epub 2015 Jul 20.
7
Extrapulmonary transport of MWCNT following inhalation exposure.
Part Fibre Toxicol. 2013 Aug 9;10:38. doi: 10.1186/1743-8977-10-38.
8
Neuroanatomic and behavioral traits for autistic disorders in age-specific restricted index selection mice.
Neuroscience. 2011 Aug 25;189:215-22. doi: 10.1016/j.neuroscience.2011.05.017. Epub 2011 May 26.
9
Maternal alcohol consumption increases sphingosine levels in the brains of progeny mice.
Neurochem Res. 2007 Dec;32(12):2217-24. doi: 10.1007/s11064-007-9445-3. Epub 2007 Aug 15.
10
Genomic mapping of direct and correlated responses to long-term selection for rapid growth rate in mice.
Genetics. 2005 Aug;170(4):1863-77. doi: 10.1534/genetics.105.041319. Epub 2005 Jun 8.

本文引用的文献

1
Genetics of growth predict patterns of brain-size evolution.
Science. 1985 Aug 16;229(4714):668-71. doi: 10.1126/science.229.4714.668.
2
Cell size, nuclear content, and the development of polyploidy in the Mammalian liver.
Proc Natl Acad Sci U S A. 1967 Feb;57(2):327-34. doi: 10.1073/pnas.57.2.327.
3
Cell cycle regulation and apoptosis.
Annu Rev Physiol. 1998;60:601-17. doi: 10.1146/annurev.physiol.60.1.601.
4
Developmental quantitative genetics, conditional epigenetic variability and growth in mice.
Genetics. 1997 Oct;147(2):765-76. doi: 10.1093/genetics/147.2.765.
5
Altering developmental trajectories in mice by restricted index selection.
Genetics. 1997 Jun;146(2):629-40. doi: 10.1093/genetics/146.2.629.
6
Apoptosis and its relation to the cell cycle in the developing cerebral cortex.
J Neurosci. 1997 Feb 1;17(3):1075-85. doi: 10.1523/JNEUROSCI.17-03-01075.1997.
7
Genetic and environmental control of variation in retinal ganglion cell number in mice.
J Neurosci. 1996 Nov 15;16(22):7193-205. doi: 10.1523/JNEUROSCI.16-22-07193.1996.
8
Quantitative trait loci for murine growth.
Genetics. 1996 Apr;142(4):1305-19. doi: 10.1093/genetics/142.4.1305.
9
Evolutionary conservation of a genetic pathway of programmed cell death.
J Cell Biochem. 1996 Jan;60(1):4-11. doi: 10.1002/(sici)1097-4644(19960101)60:1<4::aid-jcb2>3.0.co;2-1.
10
Programmed cell death and the control of cell survival: lessons from the nervous system.
Science. 1993 Oct 29;262(5134):695-700. doi: 10.1126/science.8235590.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验