Suppr超能文献

由想象手部动作产生的低分辨率脑电图模式的线性分类。

Linear classification of low-resolution EEG patterns produced by imagined hand movements.

作者信息

Babiloni F, Cincotti F, Lazzarini L, Millán J, Mouriño J, Varsta M, Heikkonen J, Bianchi L, Marciani M G

机构信息

Human Physiology Institute, University La Sapienza, Rome, Italy.

出版信息

IEEE Trans Rehabil Eng. 2000 Jun;8(2):186-8. doi: 10.1109/86.847810.

Abstract

Electroencephalograph (EEG)-based brain-computer interfaces (BCI's) require on-line detection of mental states from spontaneous EEG signals. In this framework, surface Laplacian (SL) transformation of EEG signals has proved to improve the recognition scores of imagined motor activity. The results we obtained in the first year of an European project named adaptive brain interfaces (ABI) suggest that: 1) the detection of mental imagined activity can be obtained by using the signal space projection (SSP) method as a classifier and 2) a particular type of electrodes can be used in such a BCI device, reconciling the benefits of SL waveforms and the need for the use of few electrodes. Recognition of mental activity was attempted on both raw and SL-transformed EEG data from five healthy people performing two mental tasks, namely imagined right and left hand movements.

摘要

基于脑电图(EEG)的脑机接口(BCI)需要从自发脑电信号中在线检测心理状态。在此框架下,脑电信号的表面拉普拉斯(SL)变换已被证明能提高想象运动活动的识别分数。我们在一个名为自适应脑接口(ABI)的欧洲项目的第一年所获得的结果表明:1)使用信号空间投影(SSP)方法作为分类器可检测出心理想象活动;2)在这样的BCI设备中可使用特定类型的电极,兼顾SL波形的优势和使用较少电极的需求。我们尝试对五名进行两项心理任务(即想象右手和左手运动)的健康人的原始脑电数据和经SL变换的脑电数据进行心理活动识别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验