Suppr超能文献

用于基于脑电图信号的独立于个体的想象心理任务分类的深度神经网络

Deep Neural Network for EEG Signal-Based Subject-Independent Imaginary Mental Task Classification.

作者信息

Siddiqui Farheen, Mohammad Awwab, Alam M Afshar, Naaz Sameena, Agarwal Parul, Sohail Shahab Saquib, Madsen Dag Øivind

机构信息

Department of Computer Science and Engineering, School of Engineering Sciences and Technology, Jamia Hamdard, New Delhi 110062, India.

Department of Business, Marketing and Law, USN School of Business, University of South-Eastern Norway, 3511 Hønefoss, Norway.

出版信息

Diagnostics (Basel). 2023 Feb 9;13(4):640. doi: 10.3390/diagnostics13040640.

Abstract

BACKGROUND

Mental task identification using electroencephalography (EEG) signals is required for patients with limited or no motor movements. A subject-independent mental task classification framework can be applied to identify the mental task of a subject with no available training statistics. Deep learning frameworks are popular among researchers for analyzing both spatial and time series data, making them well-suited for classifying EEG signals.

METHOD

In this paper, a deep neural network model is proposed for mental task classification for an imagined task from EEG signal data. Pre-computed features of EEG signals were obtained after raw EEG signals acquired from the subjects were spatially filtered by applying the Laplacian surface. To handle high-dimensional data, principal component analysis (PCA) was performed which helps in the extraction of most discriminating features from input vectors.

RESULT

The proposed model is non-invasive and aims to extract mental task-specific features from EEG data acquired from a particular subject. The training was performed on the average combined Power Spectrum Density (PSD) values of all but one subject. The performance of the proposed model based on a deep neural network (DNN) was evaluated using a benchmark dataset. We achieved 77.62% accuracy.

CONCLUSION

The performance and comparison analysis with the related existing works validated that the proposed cross-subject classification framework outperforms the state-of-the-art algorithm in terms of performing an accurate mental task from EEG signals.

摘要

背景

对于运动能力有限或无运动能力的患者,需要利用脑电图(EEG)信号进行心理任务识别。一个独立于受试者的心理任务分类框架可用于识别没有可用训练统计数据的受试者的心理任务。深度学习框架在研究人员中很受欢迎,可用于分析空间和时间序列数据,使其非常适合对EEG信号进行分类。

方法

本文提出了一种深度神经网络模型,用于根据EEG信号数据对想象任务进行心理任务分类。在通过应用拉普拉斯曲面在空间上对从受试者获取的原始EEG信号进行滤波后,获得了预计算的EEG信号特征。为了处理高维数据,进行了主成分分析(PCA),这有助于从输入向量中提取最具区分性的特征。

结果

所提出的模型是非侵入性的,旨在从从特定受试者获取的EEG数据中提取特定于心理任务的特征。训练是基于除一名受试者之外的所有受试者的平均组合功率谱密度(PSD)值进行的。使用基准数据集评估了基于深度神经网络(DNN)的所提出模型的性能。我们实现了77.62%的准确率。

结论

与相关现有工作的性能和比较分析验证了所提出的跨受试者分类框架在从EEG信号执行准确的心理任务方面优于现有最先进算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d6/9955721/b30b4007975d/diagnostics-13-00640-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验