Suppr超能文献

紧致弦的最优形状。

Optimal shapes of compact strings.

作者信息

Maritan A, Micheletti C, Trovato A, Banavar J R

机构信息

International School for Advanced Studies, Istituto Nazionale per la di Fisica della Materia and the Abdus Salam International Center for Theoretical Physics, Trieste, Italy.

出版信息

Nature. 2000 Jul 20;406(6793):287-90. doi: 10.1038/35018538.

Abstract

Optimal geometrical arrangements, such as the stacking of atoms, are of relevance in diverse disciplines. A classic problem is the determination of the optimal arrangement of spheres in three dimensions in order to achieve the highest packing fraction; only recently has it been proved that the answer for infinite systems is a face-centred-cubic lattice. This simply stated problem has had a profound impact in many areas, ranging from the crystallization and melting of atomic systems, to optimal packing of objects and the sub-division of space. Here we study an analogous problem--that of determining the optimal shapes of closely packed compact strings. This problem is a mathematical idealization of situations commonly encountered in biology, chemistry and physics, involving the optimal structure of folded polymeric chains. We find that, in cases where boundary effects are not dominant, helices with a particular pitch-radius ratio are selected. Interestingly, the same geometry is observed in helices in naturally occurring proteins.

摘要

最优几何排列,比如原子的堆积,在多个学科中都具有重要意义。一个经典问题是确定三维空间中球体的最优排列,以实现最高的堆积分数;直到最近才证明,对于无限系统,答案是面心立方晶格。这个表述简单的问题在许多领域都产生了深远影响,从原子系统的结晶和熔化,到物体的最优堆积以及空间的细分。在此,我们研究一个类似的问题——确定紧密堆积的紧致弦的最优形状。这个问题是生物学、化学和物理学中常见情况的数学理想化,涉及折叠聚合物链的最优结构。我们发现,在边界效应不占主导的情况下,会选择具有特定螺距 - 半径比的螺旋结构。有趣的是,在天然蛋白质中的螺旋结构中也观察到了相同的几何形状。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验