Suppr超能文献

人类DNA修复蛋白MED1(MBD4)的双相动力学,一种错配特异性DNA N-糖基化酶。

Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase.

作者信息

Petronzelli F, Riccio A, Markham G D, Seeholzer S H, Stoerker J, Genuardi M, Yeung A T, Matsumoto Y, Bellacosa A

机构信息

Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.

出版信息

J Biol Chem. 2000 Oct 20;275(42):32422-9. doi: 10.1074/jbc.M004535200.

Abstract

The human protein MED1 (also known as MBD4) was previously isolated in a two-hybrid screening using the mismatch repair protein MLH1 as a bait, and shown to have homology to bacterial base excision repair DNA N-glycosylases/lyases. To define the mechanisms of action of MED1, we implemented a sensitive glycosylase assay amenable to kinetic analysis. We show that MED1 functions as a mismatch-specific DNA N-glycosylase active on thymine, uracil, and 5-fluorouracil when these bases are opposite to guanine. MED1 lacks uracil glycosylase activity on single-strand DNA and abasic site lyase activity. The glycosylase activity of MED1 prefers substrates containing a G:T mismatch within methylated or unmethylated CpG sites; since G:T mismatches can originate via deamination of 5-methylcytosine to thymine, MED1 may act as a caretaker of genomic fidelity at CpG sites. A kinetic analysis revealed that MED1 displays a fast first cleavage reaction followed by slower subsequent reactions, resulting in biphasic time course; this is due to the tight binding of MED1 to the abasic site reaction product rather than a consequence of enzyme inactivation. Comparison of kinetic profiles revealed that the MED1 5-methylcytosine binding domain and methylation of the mismatched CpG site are not required for efficient catalysis.

摘要

人类蛋白质MED1(也称为MBD4)先前是在以错配修复蛋白MLH1为诱饵的双杂交筛选中分离得到的,并显示出与细菌碱基切除修复DNA N-糖基化酶/裂解酶具有同源性。为了确定MED1的作用机制,我们实施了一种适用于动力学分析的灵敏糖基化酶测定法。我们发现,当胸腺嘧啶、尿嘧啶和5-氟尿嘧啶与鸟嘌呤配对时,MED1作为一种对错配特异的DNA N-糖基化酶发挥作用,对这些碱基具有活性。MED1在单链DNA上缺乏尿嘧啶糖基化酶活性,也没有无碱基位点裂解酶活性。MED1的糖基化酶活性更倾向于甲基化或未甲基化的CpG位点内含有G:T错配的底物;由于G:T错配可通过5-甲基胞嘧啶脱氨基形成胸腺嘧啶而产生,因此MED1可能在CpG位点充当基因组保真度的守护者。动力学分析表明,MED1呈现快速的首次切割反应,随后是较慢的后续反应,导致双相时间进程;这是由于MED1与无碱基位点反应产物紧密结合,而非酶失活的结果。动力学曲线比较显示,高效催化不需要MED1的5-甲基胞嘧啶结合结构域和错配CpG位点的甲基化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验