Suppr超能文献

白色念珠菌P1型ATP酶在抵抗铜离子和银离子毒性中的作用。

Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity.

作者信息

Riggle P J, Kumamoto C A

机构信息

Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.

出版信息

J Bacteriol. 2000 Sep;182(17):4899-905. doi: 10.1128/JB.182.17.4899-4905.2000.

Abstract

Copper ion homeostasis is complicated in that copper is an essential element needed for a variety of cellular processes but is toxic at excess levels. To identify Candida albicans genes that are involved in resistance to copper ion toxicity, a library containing inserts of C. albicans genomic DNA was used to complement the copper sensitivity phenotype of a Saccharomyces cerevisiae cup1Delta strain that is unable to produce Cup1p, a metallothionein (MT) responsible for high-level copper ion resistance. A P1-type ATPase (CPx type) that is closely related to the human Menkes and Wilson disease proteins was cloned. The gene encoding this pump was termed CRD1 (for copper resistance determinant). A gene encoding a 76-amino-acid MT similar to higher eukaryotic MTs in structure was also cloned, and the gene was termed CRD2. Transcription of the CRD1 gene was found to increase upon growth with increasing copper levels, while the CRD2 mRNA was expressed at a constant level. Strains with the CRD1 gene disrupted were extremely sensitive to exogenous copper and failed to grow in medium containing 100 microM CuSO(4). These crd1 strains also exhibited increased sensitivity to silver and cadmium, indicating that Crd1p is somewhat promiscuous with respect to metal ion transport. Although strains with the CRD2 gene disrupted showed reduced growth rate with increasing copper concentration, the crd2 mutants eventually attained wild-type levels of growth, demonstrating that CRD2 is less important for resistance to copper ion toxicity. Crd1p is the first example of a eukaryotic copper pump that provides the primary source of cellular copper resistance, and its ability to confer silver resistance may enhance the prevalence of C. albicans as a nosocomial pathogen.

摘要

铜离子稳态较为复杂,因为铜是多种细胞过程所需的必需元素,但过量时具有毒性。为了鉴定白色念珠菌中参与抗铜离子毒性的基因,使用了一个包含白色念珠菌基因组DNA插入片段的文库来互补酿酒酵母cup1Δ菌株的铜敏感性表型,该菌株无法产生Cup1p,Cup1p是一种负责高水平铜离子抗性的金属硫蛋白(MT)。克隆了一种与人类门克斯病和威尔逊病蛋白密切相关的P1型ATP酶(CPx型)。编码该泵的基因被命名为CRD1(铜抗性决定因子)。还克隆了一个编码76个氨基酸的MT的基因,该基因在结构上与高等真核生物的MT相似,该基因被命名为CRD2。发现随着铜水平的增加,CRD1基因的转录增加,而CRD2 mRNA以恒定水平表达。CRD1基因被破坏的菌株对外源铜极其敏感,无法在含有100μM CuSO₄的培养基中生长。这些crd1菌株对银和镉也表现出增加的敏感性,表明Crd1p在金属离子运输方面有些混杂。尽管CRD2基因被破坏的菌株随着铜浓度的增加生长速率降低,但crd2突变体最终达到了野生型的生长水平,这表明CRD2对铜离子毒性抗性不太重要。Crd1p是真核铜泵的第一个例子,它提供了细胞铜抗性的主要来源,其赋予银抗性的能力可能会增加白色念珠菌作为医院病原体的流行率。

相似文献

1
Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity.
J Bacteriol. 2000 Sep;182(17):4899-905. doi: 10.1128/JB.182.17.4899-4905.2000.
2
The high copper tolerance of Candida albicans is mediated by a P-type ATPase.
Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3520-5. doi: 10.1073/pnas.97.7.3520.
7
The Candida albicans CTR1 gene encodes a functional copper transporter.
Microbiology (Reading). 2003 Jun;149(Pt 6):1461-1474. doi: 10.1099/mic.0.26172-0.
9
Regulation of copper toxicity by Candida albicans GPA2.
Eukaryot Cell. 2013 Jul;12(7):954-61. doi: 10.1128/EC.00344-12. Epub 2013 Apr 12.

引用本文的文献

1
Functional characterization of genes encoding cadmium pumping P-type ATPases in and .
Microbiol Spectr. 2023 Sep 7;11(5):e0028323. doi: 10.1128/spectrum.00283-23.
3
Identification and Characterization of the Determinants of Copper Resistance in the Acidophilic Fungus MEY-1 Using the CRISPR/Cas9 System.
Appl Environ Microbiol. 2023 Mar 29;89(3):e0210722. doi: 10.1128/aem.02107-22. Epub 2023 Mar 13.
4
Microbial silver resistance mechanisms: recent developments.
World J Microbiol Biotechnol. 2022 Jul 12;38(9):158. doi: 10.1007/s11274-022-03341-1.
6
The Role of Zinc in Copper Homeostasis of .
Int J Mol Sci. 2020 Oct 16;21(20):7665. doi: 10.3390/ijms21207665.
7
Cu transporter protein CrpF protects against Cu-induced toxicity in .
Virulence. 2020 Dec;11(1):1108-1121. doi: 10.1080/21505594.2020.1809324.
8
Bioremediation of Explosive TNT by .
Molecules. 2020 Mar 19;25(6):1393. doi: 10.3390/molecules25061393.
9
New insights into copper homeostasis in filamentous fungi.
Int Microbiol. 2020 Jan;23(1):65-73. doi: 10.1007/s10123-019-00081-5. Epub 2019 May 15.
10
Interactions with Mucosal Surfaces during Health and Disease.
Pathogens. 2019 Apr 22;8(2):53. doi: 10.3390/pathogens8020053.

本文引用的文献

1
The high copper tolerance of Candida albicans is mediated by a P-type ATPase.
Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3520-5. doi: 10.1073/pnas.97.7.3520.
2
CopA: An Escherichia coli Cu(I)-translocating P-type ATPase.
Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):652-6. doi: 10.1073/pnas.97.2.652.
3
A novel copper-binding protein with characteristics of a metallothionein from a clinical isolate of Candida albicans.
Microbiology (Reading). 1999 Sep;145 ( Pt 9):2423-2429. doi: 10.1099/00221287-145-9-2423.
4
Families of soft-metal-ion-transporting ATPases.
J Bacteriol. 1999 Oct;181(19):5891-7. doi: 10.1128/JB.181.19.5891-5897.1999.
5
Molecular mechanisms of copper homeostasis.
Biochem Biophys Res Commun. 1999 Aug 2;261(2):225-32. doi: 10.1006/bbrc.1999.1073.
7
Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast.
EMBO J. 1999 Jun 15;18(12):3325-33. doi: 10.1093/emboj/18.12.3325.
8
Molecular basis for resistance to silver cations in Salmonella.
Nat Med. 1999 Feb;5(2):183-8. doi: 10.1038/5545.
9
The elusive function of metallothioneins.
Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8428-30. doi: 10.1073/pnas.95.15.8428.
10
In vitro efficacy of a hydrophilic central venous catheter loaded with silver to prevent microbial colonization.
Zentralbl Bakteriol. 1998 Jan;287(1-2):157-69. doi: 10.1016/s0934-8840(98)80162-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验