Suppr超能文献

利用 CRISPR/Cas9 系统鉴定和表征嗜酸真菌 MEY-1 铜抗性的决定因素。

Identification and Characterization of the Determinants of Copper Resistance in the Acidophilic Fungus MEY-1 Using the CRISPR/Cas9 System.

机构信息

State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.

出版信息

Appl Environ Microbiol. 2023 Mar 29;89(3):e0210722. doi: 10.1128/aem.02107-22. Epub 2023 Mar 13.

Abstract

Copper (Cu) homeostasis has not been well documented in filamentous fungi, especially extremophiles. One of the main obstacles impeding their characterization is the lack of a powerful genome-editing tool. In this study, we applied a CRISPR/Cas9 system for efficient targeted gene disruption in the acidophilic fungus Acidomyces richmondensis MEY-1, formerly known as sp. strain MEY-1. Using this system, we investigated the basis of Cu tolerance in strain MEY-1. This strain has extremely high Cu tolerance among filamentous fungi, and the transcription factor ArAceA (A. richmondensis AceA) has been shown to be involved in this process. The deletion mutant (Δ) exhibits specific growth defects at Cu concentrations of ≥10 mM and is transcriptionally more sensitive to Cu than the wild-type strain. In addition, the putative metallothionein ArCrdA was involved in Cu tolerance only under high Cu concentrations. MEY-1 has no Aspergillus nidulans CrpA homologs, which are targets of AceA-like transcription factors and play a role in Cu tolerance. Instead, we identified the Cu-transporting P-type ATPase ArYgA, homologous to A. nidulans YgA, which was involved in pigmentation rather than Cu tolerance. When the Δ mutant was grown on medium supplemented with Cu ions, the black color was completely restored. The lack of CrpA homologs in MEY-1 and its high tolerance to Cu suggest that a novel Cu detoxification mechanism differing from the AceA-CrpA axis exists. Filamentous fungi are widely distributed worldwide and play an important ecological role as decomposers. However, the mechanisms of their adaptability to various environments are not fully understood. Various extremely acidophilic filamentous fungi have been isolated from acidic mine drainage (AMD) with extremely low pH and high heavy metal and sulfate concentrations, including . The lack of genetic engineering tools, particularly genome-editing tools, hinders the study of these acidophilic and heavy metal-resistant fungi at the molecular level. Here, we first applied a CRISPR/Cas9-mediated gene-editing system to MEY-1. Using this system, we identified and characterized the determinants of Cu resistance in MEY-1. The conserved roles of the Cu-binding transcription factor ArAceA in Cu tolerance and the Cu-transporting P-type ATPase ArYgA in the Cu-dependent production of pigment were confirmed. Our findings provide insights into the molecular basis of Cu tolerance in the acidophilic fungus MEY-1. Furthermore, the CRISPR/Cas9 system used here would be a powerful tool for studies of the mechanisms of adaptability of acidophilic fungi to extreme environments.

摘要

铜(Cu)稳态在丝状真菌中,尤其是极端微生物中尚未得到很好的描述。阻碍其特征描述的主要障碍之一是缺乏强大的基因组编辑工具。在这项研究中,我们应用了 CRISPR/Cas9 系统,在嗜酸菌 Acidomyces richmondensis MEY-1(以前称为 sp. 菌株 MEY-1)中进行高效靶向基因敲除。使用该系统,我们研究了 MEY-1 中 Cu 耐受性的基础。该菌株在丝状真菌中具有极高的 Cu 耐受性,转录因子 ArAceA(A. richmondensis AceA)已被证明参与了这一过程。Δ 缺失突变体在 Cu 浓度≥10mM 时表现出特定的生长缺陷,并且比野生型菌株对 Cu 的转录更为敏感。此外,推定的金属硫蛋白 ArCrdA 仅在高 Cu 浓度下才参与 Cu 耐受性。MEY-1 没有 Aspergillus nidulans CrpA 同源物,后者是 AceA 样转录因子的靶标,并在 Cu 耐受性中发挥作用。相反,我们鉴定了 Cu 转运 P 型 ATP 酶 ArYgA,与 A. nidulans YgA 同源,其参与色素形成而不是 Cu 耐受性。当Δ突变体在补充 Cu 离子的培养基上生长时,黑色完全恢复。在 MEY-1 中缺乏 CrpA 同源物及其对 Cu 的高耐受性表明存在不同于 AceA-CrpA 轴的新型 Cu 解毒机制。丝状真菌广泛分布于世界各地,作为分解者发挥着重要的生态作用。然而,其对各种环境的适应性机制尚未完全了解。各种极其嗜酸的丝状真菌已从酸性矿山排水(AMD)中分离出来,AMD 的 pH 值极低,重金属和硫酸盐浓度很高,包括 。缺乏遗传工程工具,特别是基因组编辑工具,阻碍了这些嗜酸和耐重金属真菌在分子水平上的研究。在这里,我们首次将 CRISPR/Cas9 介导的基因编辑系统应用于 MEY-1。使用该系统,我们鉴定并表征了 MEY-1 中 Cu 抗性的决定因素。Cu 结合转录因子 ArAceA 在 Cu 耐受性中的保守作用以及 Cu 转运 P 型 ATP 酶 ArYgA 在 Cu 依赖性色素产生中的作用得到了证实。我们的发现为嗜酸菌 MEY-1 中 Cu 耐受性的分子基础提供了见解。此外,这里使用的 CRISPR/Cas9 系统将成为研究嗜酸真菌对极端环境适应性机制的有力工具。

相似文献

本文引用的文献

6
Copper metabolism in Saccharomyces cerevisiae: an update.铜代谢在酿酒酵母中的研究进展。
Biometals. 2021 Feb;34(1):3-14. doi: 10.1007/s10534-020-00264-y. Epub 2020 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验