Suppr超能文献

ClpAP蛋白酶的伴侣蛋白组分ClpA对底物的识别

Substrate recognition by the ClpA chaperone component of ClpAP protease.

作者信息

Hoskins J R, Kim S Y, Wickner S

机构信息

Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

J Biol Chem. 2000 Nov 10;275(45):35361-7. doi: 10.1074/jbc.M006288200.

Abstract

ClpA, a member of the Clp/Hsp100 ATPase family, is a molecular chaperone and regulatory component of ClpAP protease. We explored the mechanism of protein recognition by ClpA using a high affinity substrate, RepA, which is activated for DNA binding by ClpA and degraded by ClpAP. By characterizing RepA derivatives with N- or C-terminal deletions, we found that the N-terminal portion of RepA is required for recognition. More precisely, RepA derivatives lacking the N-terminal 5 or 10 amino acids are degraded by ClpAP at a rate similar to full-length RepA, whereas RepA derivatives lacking 15 or 20 amino acids are degraded much more slowly. Thus, ClpA recognizes an N-terminal signal in RepA beginning in the vicinity of amino acids 10-15. Moreover, peptides corresponding to RepA amino acids 4-13 and 1-15 inhibit interactions between ClpA and RepA. We constructed fusions of RepA and green fluorescent protein, a protein not recognized by ClpA, and found that the N-terminal 15 amino acids of RepA are sufficient to target the fusion protein for degradation by ClpAP. However, fusion proteins containing 46 or 70 N-terminal amino acids of RepA are degraded more efficiently in vitro and are noticeably stabilized in vivo in clpADelta and clpPDelta strains compared with wild type.

摘要

ClpA是Clp/Hsp100 ATP酶家族的成员,是ClpAP蛋白酶的分子伴侣和调节成分。我们使用高亲和力底物RepA探索了ClpA识别蛋白质的机制,RepA被ClpA激活用于DNA结合,并被ClpAP降解。通过对具有N端或C端缺失的RepA衍生物进行表征,我们发现RepA的N端部分是识别所必需的。更确切地说,缺少N端5个或10个氨基酸的RepA衍生物被ClpAP降解的速率与全长RepA相似,而缺少15个或20个氨基酸的RepA衍生物降解得要慢得多。因此,ClpA识别RepA中从氨基酸10 - 15附近开始的N端信号。此外,与RepA氨基酸4 - 13和1 - 15对应的肽抑制ClpA与RepA之间的相互作用。我们构建了RepA与绿色荧光蛋白(一种不被ClpA识别的蛋白质)的融合体,发现RepA的N端15个氨基酸足以使融合蛋白被ClpAP降解。然而,与野生型相比,含有RepA的46个或70个N端氨基酸的融合蛋白在体外降解效率更高,并且在clpADelta和clpPDelta菌株的体内明显稳定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验