Suppr超能文献

人类呼吸控制系统的稳定性。I. 二维延迟状态空间模型分析

Stability of the human respiratory control system. I. Analysis of a two-dimensional delay state-space model.

作者信息

Batzel J J, Tran H T

机构信息

Center for Research in Scientific Computation, Department of Mathematics, North Carolina State University, Raleigh 27695-8205, USA.

出版信息

J Math Biol. 2000 Jul;41(1):45-79. doi: 10.1007/s002850000044.

Abstract

A number of mathematical models of the human respiratory control system have been developed since 1940 to study a wide range of features of this complex system. Among them, periodic breathing (including Cheyne-Stokes respiration and apneustic breathing) is a collection of regular but involuntary breathing patterns that have important medical implications. The hypothesis that periodic breathing is the result of delay in the feedback signals to the respiratory control system has been studied since the work of Grodins et al. in the early 1950's [12]. The purpose of this paper is to study the stability characteristics of a feedback control system of five differential equations with delays in both the state and control variables presented by Khoo et al. [17] in 1991 for modeling human respiration. The paper is divided in two parts. Part I studies a simplified mathematical model of two nonlinear state equations modeling arterial partial pressures of O2 and CO2 and a peripheral controller. Analysis was done on this model to illuminate the effect of delay on the stability. It shows that delay dependent stability is affected by the controller gain, compartmental volumes and the manner in which changes in the ventilation rate is produced (i.e., by deeper breathing or faster breathing). In addition, numerical simulations were performed to validate analytical results. Part II extends the model in Part I to include both peripheral and central controllers. This, however, necessitates the introduction of a third state equation modeling CO2 levels in the brain. In addition to analytical studies on delay dependent stability, it shows that the decreased cardiac output (and hence increased delay) resulting from the congestive heart condition can induce instability at certain control gain levels. These analytical results were also confirmed by numerical simulations.

摘要

自1940年以来,人们已开发出许多人类呼吸控制系统的数学模型,以研究这个复杂系统的广泛特征。其中,周期性呼吸(包括潮式呼吸和长吸式呼吸)是一组规律但不自主的呼吸模式,具有重要的医学意义。自20世纪50年代初格罗丁斯等人开展研究以来,周期性呼吸是呼吸控制系统反馈信号延迟的结果这一假说就一直受到研究[12]。本文的目的是研究1991年 Khoo 等人[17]提出的用于模拟人类呼吸的一个具有状态变量和控制变量延迟的五阶微分方程反馈控制系统的稳定性特征。本文分为两部分。第一部分研究了一个简化的数学模型,该模型由两个模拟氧气和二氧化碳动脉分压的非线性状态方程以及一个外周控制器组成。对该模型进行了分析,以阐明延迟对稳定性的影响。结果表明,依赖延迟的稳定性受控制器增益、隔室容积以及通气率变化产生的方式(即深呼吸或快速呼吸)影响。此外,还进行了数值模拟以验证分析结果。第二部分将第一部分的模型进行扩展,纳入了外周和中枢控制器。然而,这需要引入第三个状态方程来模拟大脑中的二氧化碳水平。除了对依赖延迟的稳定性进行分析研究外,结果还表明,充血性心脏病导致的心输出量减少(进而延迟增加)在某些控制增益水平下会引发不稳定。这些分析结果也通过数值模拟得到了证实。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验