Vielle B, Chauvet G
Institute of Theoretical Biology, University of Angers, France.
Math Biosci. 1998 Sep;152(2):105-22. doi: 10.1016/s0025-5564(98)10028-7.
A mathematical analysis of the stability in human respiration, based on the tau-decomposition method, is conducted on a simple, but realistic CO2 model of the respiratory system. This model incorporates a two-compartment representation (lungs and tissues) for the plant and a very general class of controller. By deriving an explicit stability criterion, the stability domain of the respiratory system can be characterized. We quantify the influence of four major parameters of respiratory instability, i.e. transport delay, lung volume, and equilibrium values of lung CO2 partial pressure and controller gain. We demonstrate the existence of a bifurcation point and periodic solutions, giving some characteristics of solutions near the bifurcation point.
基于τ分解方法,对人体呼吸稳定性进行了数学分析,该分析针对呼吸系统一个简单但现实的二氧化碳模型展开。此模型为对象采用了双室表示法(肺部和组织)以及一类非常通用的控制器。通过推导一个明确的稳定性准则,可以对呼吸系统的稳定域进行表征。我们量化了呼吸不稳定的四个主要参数的影响,即传输延迟、肺容积、肺二氧化碳分压的平衡值以及控制器增益。我们证明了分岔点和周期解的存在,并给出了分岔点附近解的一些特征。