Pahapill P A, Lozano A M
Department of Surgery, University of Toronto, Ontario, Canada.
Brain. 2000 Sep;123 ( Pt 9):1767-83. doi: 10.1093/brain/123.9.1767.
Akinesia and gait disturbances are particularly incapacitating for patients with Parkinson's disease. The anatomical and physiological substrates for these disturbances are poorly understood. The pedunculopontine nucleus (PPN) is thought to be involved in the initiation and modulation of gait and other stereotyped movements, because electrical stimulation and the application of neuroactive substances in the PPN can elicit locomotor activity in experimental animals. Glutamatergic neurones of the PPNd (pars dissipatus) are thought to be important regulators of the basal ganglia and spinal cord. The other component of the PPN, the cholinergic pars compacta (PPNc), is a principal component in a feedback loop from the spinal cord and limbic system back into the basal ganglia and thalamus. Electrophysiological studies suggest that 'bursting' glutamatergic PPNd neurones are related to the initiation of programmed movements while non-bursting cholinergic PPNc neurones are related to the maintenance of steady-state locomotion. Furthermore, since patients with Parkinson's disease have significant loss of PPN neurones and experimental lesions in the PPN of normal monkeys result in akinesia, the degeneration of PPN neurones or their dysfunction may be important in the pathophysiology of locomotor and postural disturbances of parkinsonism. The goal of this review is (i) to highlight the anatomical connections and physiological attributes of the PPN, (ii) to discuss how the function of these connections may be altered in the parkinsonian state, and (iii) to speculate how present and potential future therapy directed to the PPN might improve akinesia and gait difficulties in parkinsonian patients.
运动不能和步态障碍对帕金森病患者来说尤其丧失能力。对这些障碍的解剖学和生理学基础了解甚少。脚桥核(PPN)被认为参与步态和其他刻板运动的启动和调节,因为在实验动物中,对PPN进行电刺激和应用神经活性物质可引发运动活动。PPNd(分散部)的谷氨酸能神经元被认为是基底神经节和脊髓的重要调节因子。PPN的另一组成部分,胆碱能致密部(PPNc),是从脊髓和边缘系统反馈回基底神经节和丘脑的反馈回路中的主要成分。电生理研究表明,“爆发性”谷氨酸能PPNd神经元与程序性运动的启动有关,而非爆发性胆碱能PPNc神经元与稳态运动的维持有关。此外,由于帕金森病患者的PPN神经元有显著丧失,且正常猴子的PPN实验性损伤会导致运动不能,PPN神经元的变性或其功能障碍可能在帕金森病运动和姿势障碍的病理生理学中起重要作用。本综述的目的是:(i)强调PPN的解剖学连接和生理学特性;(ii)讨论在帕金森病状态下这些连接的功能可能如何改变;(iii)推测针对PPN的现有和潜在未来治疗方法可能如何改善帕金森病患者的运动不能和步态困难。