Wrisch A, Grissmer S
Department of Applied Physiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
J Biol Chem. 2000 Dec 15;275(50):39345-53. doi: 10.1074/jbc.M006827200.
Using a peptide toxin, kaliotoxin (KTX), we gained new insight into the topology of the pore region of a voltage-gated potassium channel, mKv1.1. In order to find new interactions between mKv1.1 and KTX, we investigated the pH dependence of KTX block which was stronger at pH(o) 6.2 compared with pH(o) 7.4. Using site-directed mutagenesis on the channel and the toxin, we found that protonation of His(34) in KTX caused the pH(o) dependence of KTX block. Glu(350) and Glu(353) in mKv1.1, which interact with His(34) in KTX, were calculated to be 4 and 7 A away from His(34)/KTX, respectively. Docking of KTX into a homology model of mKv1.1 based on the KcsA crystal structure using this and other known interactions as constraints showed structural differences between mKv1.1 and KcsA within the turret (amino acids 348-357). To satisfy our data, we would have to modify the KcsA crystal structure for the mKv1.1 channel orienting Glu(350) 7 A and Glu(353) 4 A more toward the center of the pore compared with KcsA. This would place Glu(350) 15 A and Glu(353) 11 A away from the center of the pore instead of the distances for the equivalent KcsA residues with 22 A for Gly(53) and 15 A for Gly(56), respectively. Bacterial and mammalian potassium channels may have structural differences regarding the turret of the outer pore vestibule. This topological difference between both channel types may have substantial influence on structure-guided development of new drugs for mammalian potassium channels by rational drug design.
利用一种肽毒素——卡利毒素(KTX),我们对电压门控钾通道mKv1.1的孔区拓扑结构有了新的认识。为了发现mKv1.1与KTX之间的新相互作用,我们研究了KTX阻断的pH依赖性,结果表明在细胞外pH值为6.2时,KTX阻断作用比pH值为7.4时更强。通过对通道和毒素进行定点诱变,我们发现KTX中His(34)的质子化导致了KTX阻断的pH依赖性。计算得出,mKv1.1中的Glu(350)和Glu(353)与KTX中的His(34)相互作用,它们与His(34)/KTX的距离分别为4 Å和7 Å。以KcsA晶体结构为基础,利用这些以及其他已知的相互作用作为约束条件,将KTX对接至mKv1.1的同源模型中,结果显示在小塔(氨基酸348 - 357)区域,mKv1.1与KcsA存在结构差异。为了符合我们的数据,我们必须修改KcsA晶体结构以适应mKv1.1通道,使Glu(350)和Glu(353)相对于KcsA更朝向孔中心,距离分别为7 Å和4 Å。这样一来,Glu(350)距离孔中心将为15 Å,Glu(353)距离孔中心将为11 Å,而不是KcsA中对应残基Gly(53)和Gly(56)分别距离孔中心22 Å和15 Å的距离。细菌和哺乳动物的钾通道在外孔前庭的小塔结构上可能存在差异。这两种通道类型之间的这种拓扑差异可能会对通过合理药物设计针对哺乳动物钾通道的新药的结构导向开发产生重大影响。