Legros Christian, Schulze Christian, Garcia Maria L, Bougis Pierre E, Martin-Eauclaire Marie-France, Pongs Olaf
Institut für Neurale Signalverarbeitung, ZMNH, Universität Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany.
Biochemistry. 2002 Dec 24;41(51):15369-75. doi: 10.1021/bi026264a.
The bacterial potassium channel, KcsA, can be modified to express a high-affinity receptor site for the scorpion toxin kaliotoxin (KTX) by substituting subregion I in the P region of KcsA with the one present in the human voltage-gated potassium channel Kv1.3 [Legros, C., Pollmann, V., Knaus, H. G., Farrell, A. M., Darbon, H., Bougis, P. E., Martin-Eauclaire, M. F., and Pongs, O. (2000) J. Biol. Chem. 275, 16918-16924]. This approach opened the way to investigate whether sequence differences in subregion I of Kv1 channels correlate with the distinct pharmacological profiles of peptide inhibitors. A panel of six chimeras between KcsA and human Kv1.1-6 were constructed, expressed in Escherichia coli, purified to homogeneity, and assessed in filter binding assays using either monoiodo-tyrosine-KTX ([(125)I]KTX) or monoiodo-tyrosine-hongotoxin(1)(A19Y/Y37F) ([(125)I]HgTX(1)(A19Y/Y37F)). The KcsA-Kv1.X chimeras were found to have lower affinities for these ligands than the corresponding mammalian Kv1.X channels, indicating that other parts of the channels may contribute to binding or that subtle structural differences exist between these channels. The properties of the KcsA-Kv1.X chimeras were also characterized in surface plasmon resonance experiments. KcsA-Kv1.3 chimeras were immobilized on the surface of a sensor chip for determining, in real time, binding of the peptides. KTX binding properties to immobilized KcsA-Kv1.3 chimera were similar to those determined by filtration techniques. Taken together, our results demonstrate that the pharmacological profile of peptide toxins can be incorporated into KcsA-Kv1.X chimeras containing the subregion I of the corresponding mammalian Kv1.X channels. This innovative approach may facilitate the high-throughput screening of ligand libraries aimed at the discovery of novel potassium channel modulators.
通过将钾通道蛋白KcsA的P区亚区I替换为人电压门控钾通道Kv1.3中的相应亚区I,可以对细菌钾通道KcsA进行改造,使其表达对蝎毒素卡利毒素(KTX)具有高亲和力的受体位点[勒格罗斯,C.,波尔曼,V.,克瑙斯,H.G.,法雷尔,A.M.,达邦,H.,布吉斯,P.E.,马丁 - 奥克莱尔,M.F.,庞斯,O.(2000年)《生物化学杂志》275,16918 - 16924]。这种方法为研究Kv1通道亚区I中的序列差异是否与肽类抑制剂的不同药理学特征相关开辟了道路。构建了一组六个KcsA与人Kv1.1 - 6之间的嵌合体,在大肠杆菌中表达,纯化至同质,并使用单碘酪氨酸 - KTX([(125)I]KTX)或单碘酪氨酸 - 红藻毒素(1)(A19Y/Y37F)([(125)I]HgTX(1)(A19Y/Y37F))在滤膜结合试验中进行评估。发现KcsA - Kv1.X嵌合体对这些配体的亲和力低于相应的哺乳动物Kv1.X通道,这表明通道的其他部分可能对结合有贡献,或者这些通道之间存在细微的结构差异。KcsA - Kv1.X嵌合体的特性也在表面等离子体共振实验中进行了表征。将KcsA - Kv1.3嵌合体固定在传感器芯片表面,用于实时测定肽的结合。KTX与固定化的KcsA - Kv1.3嵌合体的结合特性与通过过滤技术测定的结果相似。综上所述,我们的结果表明,肽毒素的药理学特征可以整合到包含相应哺乳动物Kv1.X通道亚区I的KcsA - Kv1.X嵌合体中。这种创新方法可能有助于高通量筛选配体文库,以发现新型钾通道调节剂。