Suppr超能文献

使用广义线性混合模型(GLMMs)和BUGS中的吉布斯抽样对基于家系的删失生存数据进行方差成分分析。

Variance components analysis for pedigree-based censored survival data using generalized linear mixed models (GLMMs) and Gibbs sampling in BUGS.

作者信息

Scurrah K J, Palmer L J, Burton P R

机构信息

Division of Biostatistics and Genetic Epidemiology, TVW Telethon Institute for Child Health Research, Perth, Australia.

出版信息

Genet Epidemiol. 2000 Sep;19(2):127-48. doi: 10.1002/1098-2272(200009)19:2<127::AID-GEPI2>3.0.CO;2-S.

Abstract

Complex human diseases are an increasingly important focus of genetic research. Many of the determinants of these diseases are unknown and there is often a strong residual covariance between relatives even when all known genetic and environmental factors have been taken into account. This must be modeled correctly whether scientific interest is focused on fixed effects, as in an association analysis, or on the covariance structure itself. Analysis is straightforward for multivariate normally distributed traits, but difficulties arise with other types of trait. Generalized linear mixed models (GLMMs) offer a potentially unifying approach to analysis for many classes of phenotype including right censored survival times. This includes age-at-onset and age-at-death data and a variety of other censored traits. Markov chain Monte Carlo (MCMC) methods, including Gibbs sampling, provide a convenient framework within which such GLMMs may be fitted. In this paper, we use BUGS ("Bayesian inference using Gibbs sampling": a readily available, generic Gibbs sampler) to fit GLMMs for right-censored survival times in nuclear and extended families. We discuss parameter interpretation and statistical inference, and show how to circumvent a number of important theoretical and practical problems. Using simulated data, we show that model parameters are consistent. We further illustrate our methods using data from an ongoing cohort study. Finally, we propose that the random effects associated with a genetic component of variance (e.g., sigma(2)(A)) in a GLMM may be regarded as an adjusted "phenotype" and used as input to a conventional model-based or model-free linkage analysis. This provides a simple way to conduct a linkage analysis for a trait reflected in a right-censored survival time while comprehensively adjusting for observed confounders at the level of the individual and latent environmental effects shared across families.

摘要

复杂人类疾病日益成为遗传学研究的重要焦点。这些疾病的许多决定因素尚不清楚,即使考虑了所有已知的遗传和环境因素,亲属之间往往仍存在很强的剩余协方差。无论科学兴趣是集中在固定效应上(如在关联分析中)还是协方差结构本身上,都必须正确地对其进行建模。对于多变量正态分布的性状,分析很简单,但对于其他类型的性状则会出现困难。广义线性混合模型(GLMMs)为包括右删失生存时间在内的许多类表型分析提供了一种潜在的统一方法。这包括发病年龄和死亡年龄数据以及各种其他删失性状。马尔可夫链蒙特卡罗(MCMC)方法,包括吉布斯采样,提供了一个便于拟合此类GLMMs的框架。在本文中,我们使用BUGS(“使用吉布斯采样的贝叶斯推断”:一种易于获得的通用吉布斯采样器)来拟合核心家庭和扩展家庭中右删失生存时间的GLMMs。我们讨论了参数解释和统计推断,并展示了如何规避一些重要的理论和实际问题。使用模拟数据,我们表明模型参数是一致的。我们进一步使用一项正在进行的队列研究的数据来说明我们的方法。最后,我们提出,GLMM中与方差的遗传成分相关的随机效应(例如,sigma(2)(A))可被视为一种调整后的“表型”,并用作基于传统模型或无模型连锁分析的输入。这提供了一种简单的方法来对右删失生存时间所反映的性状进行连锁分析,同时在个体水平上全面调整观察到的混杂因素以及家庭间共享的潜在环境效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验