Suppr超能文献

应用于精神分裂症家族数据的广义线性混合模型中的扩展贝叶斯模型平均法。

Extended Bayesian model averaging in generalized linear mixed models applied to schizophrenia family data.

作者信息

Tsai Miao-Yu, Hsiao Chuhsing K, Chen Wei J

机构信息

Institute of Statistics and Information Science, National Changhua University of Education, Chang-Hua, Taiwan.

出版信息

Ann Hum Genet. 2011 Jan;75(1):62-77. doi: 10.1111/j.1469-1809.2010.00592.x.

Abstract

The study of disease etiology and the search for susceptible genes of schizophrenia have attracted scientists' attention for decades. Many findings however are inconsistent, possibly due to the higher order interactions involving multi-dimensional genetic and environmental factors or due to the commingling of different ethnic groups. Several studies applied generalized linear mixed models (GLMMs) with family data to identify the genetic contribution to, and environmental influence on, schizophrenia, and to clarify the existence and sources of familial aggregation. Based on an extended Bayesian model averaging (EBMA) procedure, here we estimate the gene-gene (GG) and gene-environment (GE) interactions, and heritability of schizophrenia via variance components of random-effects in GLMMs. Our proposal takes into account the uncertainty in covariates and in genetic model structures, where each competing model includes environmental and genetic covariates, and GE and GG interactions. Simulation studies are conducted to compare the performance of the EBMA approach, permutation test procedure and GEE method. We also illustrate this approach with data from singleton and multiplex schizophrenia families. The results indicate that EBMA is a flexible and stable tool in exploring true candidate genes, and GE and GG interactions, after adjusting for explanatory variables and correlation structures within family members.

摘要

几十年来,对精神分裂症病因的研究以及对易感基因的寻找一直吸引着科学家们的关注。然而,许多研究结果并不一致,这可能是由于涉及多维遗传和环境因素的高阶相互作用,或者是由于不同种族群体的混杂。一些研究应用广义线性混合模型(GLMMs)结合家庭数据来确定遗传因素对精神分裂症的贡献以及环境因素对其的影响,并阐明家族聚集的存在及其来源。基于扩展贝叶斯模型平均(EBMA)程序,我们通过GLMMs中随机效应的方差成分来估计基因-基因(GG)和基因-环境(GE)相互作用以及精神分裂症的遗传力。我们的方法考虑了协变量和遗传模型结构中的不确定性,其中每个竞争模型都包括环境和遗传协变量以及GE和GG相互作用。进行了模拟研究以比较EBMA方法、置换检验程序和广义估计方程(GEE)方法的性能。我们还使用来自单病例和多病例精神分裂症家庭的数据来说明这种方法。结果表明,在调整家庭成员内的解释变量和相关结构后,EBMA是探索真正候选基因以及GE和GG相互作用的灵活且稳定的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验