Lotharius J, O'Malley K L
Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
J Biol Chem. 2000 Dec 8;275(49):38581-8. doi: 10.1074/jbc.M005385200.
Uptake of the Parkinsonism-inducing toxin, 1-methyl-4-phenylpyridinium (MPP(+)), into dopaminergic terminals is thought to block Complex I activity leading to ATP loss and overproduction of reactive oxygen species (ROS). The present study indicates that MPP(+)-induced ROS formation is not mitochondrial in origin but results from intracellular dopamine (DA) oxidation. Although a mean lethal dose of MPP(+) led to ROS production in identified dopaminergic neurons, toxic doses of the Complex I inhibitor rotenone did not. Concurrent with ROS formation, MPP(+) redistributed vesicular DA to the cytoplasm prior to its extrusion from the cell by reverse transport via the DA transporter. MPP(+)-induced DA redistribution was also associated with cell death. Depleting cells of newly synthesized and/or stored DA significantly attenuated both superoxide production and cell death, whereas enhancing intracellular DA content exacerbated dopaminergic sensitivity to MPP(+). Lastly, depleting cells of DA in the presence of succinate completely abolished MPP(+)-induced cell death. Thus, MPP(+) neurotoxicity is a multi-component process involving both mitochondrial dysfunction and ROS generated by vesicular DA displacement. These results suggest that in the presence of a Complex I defect, misregulation of DA storage could lead to the loss of nigrostriatal neurons in Parkinson's disease.
帕金森病诱导毒素1-甲基-4-苯基吡啶鎓(MPP(+))进入多巴胺能终末被认为会阻断复合物I的活性,导致ATP丧失和活性氧(ROS)过量产生。本研究表明,MPP(+)诱导的ROS形成并非源于线粒体,而是由细胞内多巴胺(DA)氧化所致。虽然平均致死剂量的MPP(+)会在已鉴定的多巴胺能神经元中产生ROS,但复合物I抑制剂鱼藤酮的毒性剂量却不会。与ROS形成同时发生的是,MPP(+)在通过多巴胺转运体的逆向转运将其从细胞中挤出之前,将囊泡中的DA重新分布到细胞质中。MPP(+)诱导的DA重新分布也与细胞死亡有关。耗尽新合成和/或储存的DA的细胞可显著减弱超氧化物的产生和细胞死亡,而增加细胞内DA含量则会加剧多巴胺能神经元对MPP(+)的敏感性。最后,在琥珀酸盐存在的情况下耗尽细胞内的DA可完全消除MPP(+)诱导的细胞死亡。因此,MPP(+)神经毒性是一个多组分过程,涉及线粒体功能障碍和囊泡DA移位产生的ROS。这些结果表明,在存在复合物I缺陷的情况下,DA储存的失调可能导致帕金森病中黑质纹状体神经元的丧失。