Podo F
Biochimie. 1975;57(4):461-9. doi: 10.1016/s0300-9084(75)80333-6.
This review article outlines some potentials and limits of the recent application of high resolution Nuclear Magnetic Resonance technique--coupled to the Fourier transformation methods--to the study of biological membranes. Molecular arrangement and dynamical structure characters can be assessed at the level of individual chemical groups in lipid bilayer regions of natural and model membranes, through the determination of physical parameters like chemical shifts, spin-lattice (T1) and spin-spin (T2) nuclear magnetic relaxation times. The results of some significant experiments carried out on single-wall lecithin vesicles as well as on intact natural membranes, are summarized and discussed. Useful information can be obtained on the lipid fatty-acid chains thermal transition, by comparing two lecithin vesicles of the same size, formed by the same host lecithin, but incorporated with different molecular components. In particular, T1 and T2 measurements, interpreted in terms of a two- (or more-) correlation time theoretical models, are able to demonstrate different degrees of motional anisotropy in bilayers formed by mixed lecithins or by mixtures of lecithin and fatty acids, possessing moderately different chain lengths [13]. Chromophore-containing molecules, like chlorophyll [12] or fluorescent probes [14] can be located, within few Angstroms, in a lipid bilayer through proton chemical shift measurements; in addition the perturbation of the lipid membrane structure, as induced by the incorporated probe, is assessed mainly in terms of the intramolecular dynamical structure of the host lecithin molecules, by means of T1 and linewidth studies. The comparison of the n.m.r. relaxation behaviour in intact membranes and in vesicles formed by their extracted lipids may, finally, provide indirect information on the lipid-protein intermolecular interactions and relative mobility, besides indicating the intramolecular mobility characters of the lipid bilayer regions of the membrane.
这篇综述文章概述了高分辨率核磁共振技术(与傅里叶变换方法相结合)在生物膜研究中的一些潜力和局限性。通过测定化学位移、自旋晶格(T1)和自旋自旋(T2)核磁共振弛豫时间等物理参数,可以在天然膜和模型膜脂质双层区域的单个化学基团水平上评估分子排列和动态结构特征。总结并讨论了在单壁卵磷脂囊泡以及完整天然膜上进行的一些重要实验的结果。通过比较由相同主体卵磷脂形成但掺入不同分子成分的两个相同大小的卵磷脂囊泡,可以获得关于脂质脂肪酸链热转变的有用信息。特别是,根据双(或多)相关时间理论模型解释的T1和T2测量,能够证明由混合卵磷脂或卵磷脂与脂肪酸混合物形成的双层中不同程度的运动各向异性,这些混合物具有适度不同的链长[13]。含发色团的分子,如叶绿素[12]或荧光探针[14],可以通过质子化学位移测量在几埃范围内定位在脂质双层中;此外,通过T1和线宽研究,主要根据主体卵磷脂分子的分子内动态结构来评估掺入探针引起的脂质膜结构扰动。最后,比较完整膜和由其提取的脂质形成的囊泡中的核磁共振弛豫行为,除了表明膜脂质双层区域的分子内迁移特征外,还可以提供关于脂质-蛋白质分子间相互作用和相对迁移率的间接信息。