Kume S, Saneyoshi T, Mikoshiba K
Mikoshiba Calciosignal Net Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation, Tokyo.
Dev Growth Differ. 2000 Aug;42(4):327-35. doi: 10.1046/j.1440-169x.2000.00519.x.
The constitutively active Gqalpha mutant construct (GqalphaQ-L) in Xenopus early embryos was overexpressed and the effects on dorsoventral patterning examined. It was found that prolonged stimulation of inositol 1,4,5-trisphosphate (IP3)-Ca2+ signaling by overexpression of GqalphaQ-L led to desensitization of IP3-induced Ca2+ release (IICR). Desensitization of IICR on the ventral side specifically induced an ectopic dorsal axis due to the conversion of ventral marginal mesoderm to adopt a dorsal fate. This effect of desensitization resembles that of inhibitory antibodies against the IP3 receptor, as reported previously. These results strengthen the earlier finding that active IP3-Ca2+ signaling functions in ventral signaling during the early embryonic development of Xenopus. Furthermore, the nature of downregulation of the Xenopus IP3 receptor through continuous stimulation of IP3-Ca2+ signaling might play a role in regulating endogenous IP3-Ca2+ signaling in Xenopus early development.