Suppr超能文献

分支系统学分析:其在复杂疾病关联研究中的应用

Cladistic analysis: its applications in association studies of complex diseases.

作者信息

Heng C K, Low P S

机构信息

Department of Paediatrics, National University of Singapore.

出版信息

Ann Acad Med Singap. 2000 May;29(3):313-21.

Abstract

INTRODUCTION

With the increase in genotype data generated by high throughput typing technologies, there is currently a lack of complexity-oriented analytical methods that can maximise the information obtained from these raw data for the study of complex diseases. We introduce the cladistic analysis that is traditionally applied in evolution studies and taxonomy, to specify relevant comparisons of traits associated with each haplotype/genotype in a population sample.

METHODS

Haplotypes are determined from the genotype data and linked to each other by their evolutionary relationships to form a cladogram. This is then used to specify relevant statistical comparisons. The central assumption is that any functionally important genetic variation causing a phenotypic effect at any point in the course of evolution will be embedded in the framework of haplotypes represented by the cladogram.

APPLICATIONS

There are various applications of cladistic analysis in the study of complex diseases. Basically, it helps in the identification of haplotypes that are associated with a disease state or a significantly altered level of quantitative trait. However, its limitations are that only polymorphic sites on the same DNA strand can be analysed and that recombination events must be relatively rarer than mutational events.

CONCLUSIONS

In the absence of methods that can recognise the complexity of the genotype organization, and given its ability to exploit evolutionary information for optimising the analytical strategy, cladistic analysis would be a method of choice for studying multi-loci effects on a quantitative trait or disease outcome.

摘要

引言

随着高通量分型技术所产生的基因型数据不断增加,目前缺乏能够将从这些原始数据中获取的信息最大化以用于复杂疾病研究的面向复杂性的分析方法。我们引入了传统上应用于进化研究和分类学的分支分析,以明确群体样本中与每个单倍型/基因型相关的性状的相关比较。

方法

从基因型数据中确定单倍型,并根据它们的进化关系相互关联以形成系统发育树。然后将其用于明确相关的统计比较。核心假设是,在进化过程中任何导致表型效应的功能重要的遗传变异都将嵌入由系统发育树表示的单倍型框架中。

应用

分支分析在复杂疾病研究中有多种应用。基本上,它有助于识别与疾病状态或数量性状水平显著改变相关的单倍型。然而,其局限性在于只能分析同一DNA链上的多态性位点,并且重组事件必须比突变事件相对更罕见。

结论

在缺乏能够识别基因型组织复杂性的方法的情况下,鉴于其利用进化信息优化分析策略的能力,分支分析将是研究数量性状或疾病结局的多位点效应的一种选择方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验