Liu Jianfeng, Papasian Chris, Deng Hong-Wen
Department of Orthopedic Surgery, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States of America.
PLoS Genet. 2007 Mar 23;3(3):e46. doi: 10.1371/journal.pgen.0030046.
In case-control studies, genetic associations for complex diseases may be probed either with single-locus tests or with haplotype-based tests. Although there are different views on the relative merits and preferences of the two test strategies, haplotype-based analyses are generally believed to be more powerful to detect genes with modest effects. However, a main drawback of haplotype-based association tests is the large number of distinct haplotypes, which increases the degrees of freedom for corresponding test statistics and thus reduces the statistical power. To decrease the degrees of freedom and enhance the efficiency and power of haplotype analysis, we propose an improved haplotype clustering method that is based on the haplotype cladistic analysis developed by Durrant et al. In our method, we attempt to combine the strengths of single-locus analysis and haplotype-based analysis into one single test framework. Novel in our method is that we develop a more informative haplotype similarity measurement by using p-values obtained from single-locus association tests to construct a measure of weight, which to some extent incorporates the information of disease outcomes. The weights are then used in computation of similarity measures to construct distance metrics between haplotype pairs in haplotype cladistic analysis. To assess our proposed new method, we performed simulation analyses to compare the relative performances of (1) conventional haplotype-based analysis using original haplotype, (2) single-locus allele-based analysis, (3) original haplotype cladistic analysis (CLADHC) by Durrant et al., and (4) our weighted haplotype cladistic analysis method, under different scenarios. Our weighted cladistic analysis method shows an increased statistical power and robustness, compared with the methods of haplotype cladistic analysis, single-locus test, and the traditional haplotype-based analyses. The real data analyses also show that our proposed method has practical significance in the human genetics field.
在病例对照研究中,可以使用单基因座检验或基于单倍型的检验来探究复杂疾病的基因关联。尽管对于这两种检验策略的相对优点和偏好存在不同观点,但一般认为基于单倍型的分析在检测具有中等效应的基因方面更具效力。然而,基于单倍型的关联检验的一个主要缺点是存在大量不同的单倍型,这增加了相应检验统计量的自由度,从而降低了统计效力。为了减少自由度并提高单倍型分析的效率和效力,我们提出了一种改进的单倍型聚类方法,该方法基于Durrant等人开发的单倍型分支分析。在我们的方法中,我们试图将单基因座分析和基于单倍型的分析的优势整合到一个单一的检验框架中。我们方法的新颖之处在于,我们通过使用从单基因座关联检验中获得的p值来构建权重度量,从而开发了一种更具信息量的单倍型相似性度量,该度量在一定程度上纳入了疾病结局的信息。然后,这些权重用于相似性度量的计算,以构建单倍型分支分析中各单倍型对之间的距离度量。为了评估我们提出的新方法,我们进行了模拟分析,以比较在不同情况下(1)使用原始单倍型的传统基于单倍型的分析、(2)基于单基因座等位基因的分析、(3)Durrant等人的原始单倍型分支分析(CLADHC)以及(4)我们的加权单倍型分支分析方法的相对性能。与单倍型分支分析方法、单基因座检验方法和传统的基于单倍型的分析方法相比,我们的加权分支分析方法显示出更高的统计效力和稳健性。实际数据分析也表明,我们提出的方法在人类遗传学领域具有实际意义。