Turanlahti M, Pesonen E, Lassus P, Andersson S
Hospital for Children and Adolescents, Helsinki University Central Hospital, Finland.
Acta Paediatr. 2000 Aug;89(8):966-70. doi: 10.1080/080352500750043440.
Therapy with inhaled nitric oxide is usually given with high concentrations of oxygen. As nitric oxide (NO) is a free radical and hyperoxia increases oxygen radical production, we examined the effect of short exposure to NO or oxygen (O2) or both, on free radical-mediated changes in macromolecules, i.e. lipids and proteins, in vivo. Wistar rats were exposed to > 95% O2 or 40 ppm NO, or both, for 6 h. Rats in 21% O2 served as controls. Lipid peroxidation was quantified as expired pentane, oxidative protein modification as carbonyl concentration, and pulmonary neutrophil accumulation as myeloperoxidase activity in the lungs. Hyperoxia for 6 h caused higher expired pentane (4.83 +/- 1.39 pmol/min/100 g) and protein carbonylation (15.91 +/- 2.49 nmol/mg) compared to controls (2.26 +/- 1.00 pmol/min/100 g, and 7.40 +/- 1.12 nmol/mg, respectively; both p < 0.05). After exposure to NO in air, protein carbonylation (14.50 +/- 5.44 nmol/mg) and myeloperoxidase activity (4.85 +/- 1.52 mU/mg) were higher than in controls (myeloperoxidase 2.49 +/- 0.56 mU/mg; both p < 0.05). NO with hyperoxia decreased pentane (2.56 +/- 1.51 pmol/min/ 100 g) and protein carbonylation (11.38 +/- 3.58 nmol/mg) compared to hyperoxia (both p < 0.05).
In vivo, 6 h exposure to hyperoxia or to 40 ppm NO induces free radical-mediated lung injury. The combination of hyperoxia and 40 ppm NO significantly attenuates free radical-mediated effects in the lungs compared to hyperoxia or 40 ppm NO in air.
吸入一氧化氮治疗通常与高浓度氧气联合使用。由于一氧化氮(NO)是一种自由基,而高氧会增加氧自由基的产生,我们研究了短时间暴露于NO或氧气(O2)或两者对体内自由基介导的大分子(即脂质和蛋白质)变化的影响。将Wistar大鼠暴露于>95% O2或40 ppm NO或两者中6小时。处于21% O2环境中的大鼠作为对照。脂质过氧化以呼出戊烷定量,氧化蛋白质修饰以羰基浓度定量,肺中性粒细胞积聚以肺中髓过氧化物酶活性定量。与对照组(分别为2.26±1.00 pmol/分钟/100克和7.40±1.12 nmol/毫克;两者p<0.05)相比,高氧6小时导致呼出戊烷(4.83±1.39 pmol/分钟/100克)和蛋白质羰基化(15.91±2.49 nmol/毫克)升高。在空气中暴露于NO后,蛋白质羰基化(14.50±5.44 nmol/毫克)和髓过氧化物酶活性(4.85±1.52 mU/毫克)高于对照组(髓过氧化物酶2.49±0.56 mU/毫克;两者p<0.05)。与高氧相比,高氧联合NO可降低戊烷(2.56±1.51 pmol/分钟/100克)和蛋白质羰基化(11.38±3.58 nmol/毫克)(两者p<0.05)。
在体内,暴露于高氧或40 ppm NO 6小时会诱导自由基介导的肺损伤。与高氧或空气中40 ppm NO相比,高氧与40 ppm NO联合使用可显著减轻肺中自由基介导的效应。