Schweighofer N, Ferriol G
Exploratory Research for Advanced Technology, Japan Science and Technology, ATR, 2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan.
Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10661-5. doi: 10.1073/pnas.97.19.10661.
The gaseous second messenger nitric oxide (NO), which readily diffuses in brain tissue, has been implicated in cerebellar long-term depression (LTD), a form of synaptic plasticity thought to be involved in cerebellar learning. Can NO diffusion facilitate cerebellar learning? The inferior olive (IO) cells, which provide the error signals necessary for modifying the granule cell-Purkinje cell (PC) synapses by LTD, fire at ultra-low firing rates in vivo, rarely more than 2-4 spikes within a second. In this paper, we show that NO diffusion can improve the transmission of sporadic IO error signals to PCs within cerebellar cortical functional units, or microzones. To relate NO diffusion to adaptive behavior, we add NO diffusion and a "volumic" LTD learning rule, i.e., a learning rule that depends both on the synaptic activity and on the NO concentration at the synapse, to a cerebellar model for arm movement control. Our results show that biologically plausible diffusion leads to an increase in information transfer of the error signals to the PCs when the IO firing rate is ultra-low. This, in turn, enhances cerebellar learning as shown by improved performance in an arm-reaching task.
气态第二信使一氧化氮(NO)能在脑组织中轻易扩散,它与小脑长时程抑制(LTD)有关,LTD是一种被认为参与小脑学习的突触可塑性形式。NO扩散能促进小脑学习吗?下橄榄核(IO)细胞通过LTD为修饰颗粒细胞 - 浦肯野细胞(PC)突触提供必要的误差信号,在体内以超低的放电频率放电,一秒内很少超过2 - 4个峰电位。在本文中,我们表明NO扩散可以改善小脑皮质功能单元或微区内零星的IO误差信号向PC的传递。为了将NO扩散与适应性行为联系起来,我们将NO扩散和一种“体积性”LTD学习规则(即一种既依赖于突触活动又依赖于突触处NO浓度的学习规则)添加到一个用于手臂运动控制的小脑模型中。我们的结果表明,当IO放电频率超低时,生物学上合理的扩散会导致误差信号向PC的信息传递增加。反过来,这会增强小脑学习,如在手臂伸展任务中表现的改善所示。