Suppr超能文献

分层复发时间的非参数和半参数趋势分析。

Nonparametric and semiparametric trend analysis for stratified recurrence times.

作者信息

Wang M C, Chen Y Q

机构信息

Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, USA.

出版信息

Biometrics. 2000 Sep;56(3):789-94. doi: 10.1111/j.0006-341x.2000.00789.x.

Abstract

Recurrent event data are frequently encountered in longitudinal follow-up studies when the occurrences of multiple events are considered as the major outcomes. Suppose that the recurrent events are of the same type and the variable of interest is the recurrence time between successive events. In many applications, the distributional pattern of recurrence times can be used as an index for the progression of a disease. Such a distributional pattern is important for understanding the natural history of a disease or for confirming long-term treatment effect. In this article, we discuss and define the comparability of recurrence times. Nonparametric and semiparametric methods are developed for testing trend of recurrence time distributions and estimating trend parameters in regression models. The construction of the methods is based on comparable recurrence times from stratified data. A real data example is presented to illustrate the use of methodology.

摘要

在纵向随访研究中,当将多个事件的发生视为主要结局时,经常会遇到复发事件数据。假设复发事件属于同一类型,且感兴趣的变量是连续事件之间的复发时间。在许多应用中,复发时间的分布模式可作为疾病进展的一个指标。这种分布模式对于理解疾病的自然史或确认长期治疗效果很重要。在本文中,我们讨论并定义了复发时间的可比性。开发了非参数和半参数方法来检验复发时间分布的趋势,并估计回归模型中的趋势参数。这些方法的构建基于分层数据中可比的复发时间。给出了一个实际数据示例来说明该方法的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验