Suppr超能文献

用于分析复发间隔时间数据并应用于造血细胞移植后感染的非参数方法。

Nonparametric methods for analyzing recurrent gap time data with application to infections after hematopoietic cell transplant.

作者信息

Lee Chi Hyun, Luo Xianghua, Huang Chiung-Yu, DeFor Todd E, Brunstein Claudio G, Weisdorf Daniel J

机构信息

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.

Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.

出版信息

Biometrics. 2016 Jun;72(2):535-45. doi: 10.1111/biom.12439. Epub 2015 Nov 17.

Abstract

Infection is one of the most common complications after hematopoietic cell transplantation. Many patients experience infectious complications repeatedly after transplant. Existing statistical methods for recurrent gap time data typically assume that patients are enrolled due to the occurrence of an event of interest, and subsequently experience recurrent events of the same type; moreover, for one-sample estimation, the gap times between consecutive events are usually assumed to be identically distributed. Applying these methods to analyze the post-transplant infection data will inevitably lead to incorrect inferential results because the time from transplant to the first infection has a different biological meaning than the gap times between consecutive recurrent infections. Some unbiased yet inefficient methods include univariate survival analysis methods based on data from the first infection or bivariate serial event data methods based on the first and second infections. In this article, we propose a nonparametric estimator of the joint distribution of time from transplant to the first infection and the gap times between consecutive infections. The proposed estimator takes into account the potentially different distributions of the two types of gap times and better uses the recurrent infection data. Asymptotic properties of the proposed estimators are established.

摘要

感染是造血细胞移植后最常见的并发症之一。许多患者在移植后反复出现感染并发症。现有的用于复发间隔时间数据的统计方法通常假定患者是由于发生了感兴趣的事件而被纳入研究,随后经历相同类型的复发事件;此外,对于单样本估计,通常假定连续事件之间的间隔时间是同分布的。将这些方法应用于分析移植后感染数据将不可避免地导致错误的推断结果,因为从移植到首次感染的时间与连续复发感染之间的间隔时间具有不同的生物学意义。一些无偏但效率低下的方法包括基于首次感染数据的单变量生存分析方法或基于首次和第二次感染的双变量序列事件数据方法。在本文中,我们提出了一种从移植到首次感染的时间以及连续感染之间的间隔时间的联合分布的非参数估计器。所提出的估计器考虑了两种类型间隔时间潜在的不同分布,并更好地利用了复发感染数据。建立了所提出估计器的渐近性质。

相似文献

10
Nonparametric modeling of the gap time in recurrent event data.复发事件数据中间隔时间的非参数建模。
Lifetime Data Anal. 2009 Jun;15(2):256-77. doi: 10.1007/s10985-008-9110-4. Epub 2009 Jan 3.

本文引用的文献

1
Nonparametric Estimation of a Recurrent Survival Function.复发生存函数的非参数估计
J Am Stat Assoc. 1999 Mar 1;94(445):146-153. doi: 10.1080/01621459.1999.10473831.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验