Liu Peng, Huang Yijian, Chan Kwun Chuen Gary, Chen Ying Qing
School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent CT2 7FS, UK.
Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
Stat Biosci. 2023 Jul;15(2):455-474. doi: 10.1007/s12561-023-09376-8. Epub 2023 Jun 3.
Recurrent event data are frequently encountered in many longitudinal studies where each individual may experience more than one event. Wang and Chen (Biometrics 56(3):789-794, 2000) proposed a comparability constraint to estimate the time trend for the gap times, where the gap time pairs that satisfy the constraint have the same conditional distribution. However, the comparable paired gap times are also independent. Therefore, the comparable gap time pairs will be subject to a stronger constraint than needed for the estimation. Thus their procedure is subject to information loss. Under the accelerated failure time model, we propose a new comparability constraint that can overcome the drawback mentioned above. The gap time pairs being selected by the proposed comparability constraint will still have the same distribution, but they do not need to be independent of each other. We showed that the proposed comparability constraint will utilize more gap time data pairs than the strong comparability. And we showed via various simulation studies that the variance will be smaller than Wang and Chen's (2000) estimator. We apply the proposed method to the HIV Prevention Trial Network 052 study.
在许多纵向研究中经常会遇到复发事件数据,其中每个个体可能经历不止一次事件。王和陈(《生物统计学》56(3):789 - 794, 2000)提出了一种可比性约束来估计间隔时间的时间趋势,满足该约束的间隔时间对具有相同的条件分布。然而,可比较的配对间隔时间也是独立的。因此,可比较的间隔时间对将受到比估计所需更强的约束。所以他们的方法存在信息损失。在加速失效时间模型下,我们提出了一种新的可比性约束,它可以克服上述缺点。通过所提出的可比性约束选择的间隔时间对仍将具有相同的分布,但它们不需要相互独立。我们表明,所提出的可比性约束将比强可比性使用更多的间隔时间数据对。并且我们通过各种模拟研究表明,其方差将小于王和陈(2000)的估计量。我们将所提出的方法应用于艾滋病预防试验网络052研究。