Suppr超能文献

凸形ROC曲线的回归模型。

Regression models for convex ROC curves.

作者信息

Lloyd C J

机构信息

Australian Graduate School of Management, Kensington, Australia.

出版信息

Biometrics. 2000 Sep;56(3):862-7. doi: 10.1111/j.0006-341x.2000.00862.x.

Abstract

The performance of a diagnostic test is summarized by its receiver operating characteristic (ROC) curve. Under quite natural assumptions about the latent variable underlying the test, the ROC curve is convex. Empirical data on a test's performance often comes in the form of observed true positive and false positive relative frequencies under varying conditions. This paper describes a family of regression models for analyzing such data. The underlying ROC curves are specified by a quality parameter delta and a shape parameter mu and are guaranteed to be convex provided delta > 1. Both the position along the ROC curve and the quality parameter delta are modeled linearly with covariates at the level of the individual. The shape parameter mu enters the model through the link functions log(p mu) - log(1 - p mu) of a binomial regression and is estimated either by search or from an appropriate constructed variate. One simple application is to the meta-analysis of independent studies of the same diagnostic test, illustrated on some data of Moses, Shapiro, and Littenberg (1993). A second application, to so-called vigilance data, is given, where ROC curves differ across subjects and modeling of the position along the ROC curve is of primary interest.

摘要

诊断测试的性能由其接收者操作特征(ROC)曲线概括。在关于测试背后潜在变量的相当自然的假设下,ROC曲线是凸的。关于测试性能的经验数据通常以在不同条件下观察到的真阳性和假阳性相对频率的形式出现。本文描述了一族用于分析此类数据的回归模型。潜在的ROC曲线由一个质量参数δ和一个形状参数μ指定,并且只要δ>1就保证是凸的。沿着ROC曲线的位置和质量参数δ都在个体层面上与协变量进行线性建模。形状参数μ通过二项式回归的链接函数log(pμ) - log(1 - pμ)进入模型,并通过搜索或从适当构造的变量中进行估计。一个简单的应用是对同一诊断测试的独立研究进行荟萃分析,以Moses、Shapiro和Littenberg(1993)的一些数据为例进行说明。给出了第二个应用,即所谓的警戒数据,其中不同受试者的ROC曲线不同,并且沿着ROC曲线位置的建模是主要关注点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验