Suppr超能文献

改变真核生物鸟氨酸脱羧酶的反应特异性。

Altering the reaction specificity of eukaryotic ornithine decarboxylase.

作者信息

Jackson L K, Brooks H B, Osterman A L, Goldsmith E J, Phillips M A

机构信息

Department of Pharmacology and Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9041, USA.

出版信息

Biochemistry. 2000 Sep 19;39(37):11247-57. doi: 10.1021/bi001209s.

Abstract

Ornithine decarboxylase (ODC) catalyzes the first committed step in the biosynthesis of polyamines, and it has been identified as a drug target for the treatment of African sleeping sickness, caused by Trypanosoma brucei. ODC is a pyridoxal 5'-phosphate (PLP) dependent enzyme and an obligate homodimer. X-ray structural analysis of the complex of the T. brucei wild-type enzyme with the product putrescine reveals two structural changes that occur upon ligand binding: Lys-69 is displaced by putrescine and forms new interactions with Glu-94 and Asp-88, and the side chain of Cys-360 rotates into the active site to within 3.4 A of the imine bond. Mutation of Cys-360 to Ala or Ser reduces the k(cat) of the decarboxylation reaction by 50- and 1000-fold, respectively. However, HPLC analysis of the products demonstrates that the mutant enzymes almost exclusively catalyze a decarboxylation-dependent transamination reaction to form pyridoxamine 5-phosphate (PMP) and gamma-aminobutyraldehyde, instead of PLP and putrescine. This side reaction arises when the decarboxylated substrate intermediate is protonated at C4' of PLP instead of at the C(alpha) of substrate. For the reaction catalyzed by the wild-type enzyme, this side reaction occurs infrequently (<0.01% of the turnovers). Single turnover analysis and multiwavelength stopped-flow spectroscopic studies suggest that for the mutant ODCs protonation at C4' occurs either very rapidly or in a concerted reaction with decarboxylation and that the rate-limiting step in the steady-state reaction is Schiff base hydrolysis/product release. These studies demonstrate a role for Cys-360 in the control of the C(alpha) protonation step that catalyzes the formation of the physiological product putrescine. The results further provide insight into the mechanism by which this class of PLP-dependent enzymes controls reaction specificity.

摘要

鸟氨酸脱羧酶(ODC)催化多胺生物合成中的首个关键步骤,它已被确定为治疗由布氏锥虫引起的非洲昏睡病的药物靶点。ODC是一种依赖于磷酸吡哆醛(PLP)的酶,并且是一种专性同型二聚体。布氏锥虫野生型酶与产物腐胺复合物的X射线结构分析揭示了配体结合后发生的两种结构变化:Lys-69被腐胺取代,并与Glu-94和Asp-88形成新的相互作用,且Cys-360的侧链旋转至活性位点内,距离亚胺键3.4 Å。将Cys-360突变为Ala或Ser分别使脱羧反应的k(cat)降低50倍和1000倍。然而,产物的HPLC分析表明,突变酶几乎只催化依赖于脱羧的转氨反应,形成磷酸吡哆胺(PMP)和γ-氨基丁醛,而不是PLP和腐胺。当脱羧的底物中间体在PLP的C4'而不是底物的C(α)处质子化时,就会发生这种副反应。对于野生型酶催化的反应,这种副反应很少发生(<0.01%的周转数)。单周转分析和多波长停流光谱研究表明,对于突变型ODC,C4'处的质子化要么非常迅速地发生,要么与脱羧反应协同进行,并且稳态反应中的限速步骤是席夫碱水解/产物释放。这些研究证明了Cys-360在控制催化生理产物腐胺形成的C(α)质子化步骤中的作用。结果进一步深入了解了这类依赖于PLP的酶控制反应特异性的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验