Fesko Kateryna, Suplatov Dmitry, Švedas Vytas
Institute of Organic Chemistry Graz University of Technology Austria.
Belozersky Institute of Physicochemical Biology Lomonosov Moscow State University Russia.
FEBS Open Bio. 2018 May 21;8(6):1013-1028. doi: 10.1002/2211-5463.12441. eCollection 2018 Jun.
Understanding the role of specific amino acid residues in the molecular mechanism of a protein's function is one of the most challenging problems in modern biology. A systematic bioinformatic analysis of protein families and superfamilies can help in the study of structure-function relationships and in the design of improved variants of enzymes/proteins, but represents a methodological challenge. The pyridoxal-5'-phosphate (PLP)-dependent enzymes are catalytically diverse and include the aspartate aminotransferase superfamily which implements a common structural framework known as type fold I. In this work, the recently developed bioinformatic online methods Mustguseal and Zebra were used to collect and study a large representative set of the aspartate aminotransferase superfamily with high structural, but low sequence similarity to l-threonine aldolase from (LTAaj), in order to identify conserved positions that provide general properties in the superfamily, and to reveal family-specific positions (FSPs) responsible for functional diversity. The roles of the identified residues in the catalytic mechanism and reaction specificity of LTAaj were then studied by experimental site-directed mutagenesis and molecular modelling. It was shown that FSPs determine reaction specificity by coordinating the PLP cofactor in the enzyme's active centre, thus influencing its activation and the tautomeric equilibrium of the intermediates, which can be used as hotspots to modulate the protein's functional properties. Mutagenesis at the selected FSPs in LTAaj led to a reduction in a native catalytic activity and increased the rate of promiscuous reactions. The results provide insight into the structural basis of catalytic promiscuity of the PLP-dependent enzymes and demonstrate the potential of bioinformatic analysis in studying structure-function relationship in protein superfamilies.
了解特定氨基酸残基在蛋白质功能分子机制中的作用是现代生物学中最具挑战性的问题之一。对蛋白质家族和超家族进行系统的生物信息学分析有助于研究结构-功能关系以及设计改良的酶/蛋白质变体,但这是一项方法学上的挑战。依赖于磷酸吡哆醛(PLP)的酶具有多种催化功能,包括天冬氨酸转氨酶超家族,该超家族采用一种称为I型折叠的常见结构框架。在这项工作中,使用最近开发的生物信息学在线方法Mustguseal和Zebra来收集和研究一组具有代表性的天冬氨酸转氨酶超家族,它们与来自[物种名称未给出]的L-苏氨酸醛缩酶(LTAaj)具有高度的结构相似性,但序列相似性较低,目的是确定在超家族中提供一般特性的保守位置,并揭示负责功能多样性的家族特异性位置(FSPs)。然后通过实验性定点诱变和分子建模研究了所鉴定残基在LTAaj催化机制和反应特异性中的作用。结果表明,FSPs通过在酶的活性中心配位PLP辅因子来决定反应特异性,从而影响其活化以及中间体的互变异构平衡,这些位置可用作调节蛋白质功能特性的热点。在LTAaj中选定的FSPs处进行诱变导致天然催化活性降低,并增加了混杂反应的速率。这些结果为依赖PLP的酶催化混杂性的结构基础提供了见解,并证明了生物信息学分析在研究蛋白质超家族结构-功能关系中的潜力。