Suppr超能文献

蛋白质合成中酰胺氨基酸的特定结构域募集。

Domain-specific recruitment of amide amino acids for protein synthesis.

作者信息

Tumbula D L, Becker H D, Chang W Z, Söll D

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.

出版信息

Nature. 2000 Sep 7;407(6800):106-10. doi: 10.1038/35024120.

Abstract

The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis.

摘要

氨酰 - 转运RNA的形成是确保蛋白质合成准确性的关键步骤。尽管这一过程在所有生物体中都至关重要,但古菌和一些细菌如何合成天冬酰胺 - tRNA(Asn - tRNA)和谷氨酰胺 - tRNA(Gln - tRNA)仍然未知。这些酰胺氨酰 - tRNA可以分别由天冬酰胺 - tRNA合成酶和谷氨酰胺 - tRNA合成酶催化tRNA的直接酰化作用形成。另一条独立的间接途径涉及错误酰化的天冬氨酸 - tRNA(Asn)或谷氨酸 - tRNA(Gln)的形成,以及随后这些氨基酸与tRNA结合时的酰胺化作用,这一过程由酰胺转移酶催化。在这里,我们表明所有古菌都拥有一种用于形成Gln - tRNA的古菌特异性异源二聚体酰胺转移酶(由gatD和gatE编码)。然而,古菌中天冬酰胺 - tRNA的合成方式存在差异:一些古菌使用天冬酰胺 - tRNA合成酶,而另一些则使用异源三聚体酰胺转移酶(由gatA、gatB和gatC基因编码)。由于细菌主要使用转酰胺作用,而真核细胞质使用谷氨酰胺 - tRNA合成酶,看来这三个结构域在Gln - tRNA合成中使用了不同的机制;因此,这是蛋白质合成中已知的唯一一步,在这一步中所有三个结构域都出现了分化。对这两种酰胺转移酶的仔细研究表明,它们各自招募了一种代谢酶来辅助其功能;这为氨基酸代谢与蛋白质生物合成之间的关系提供了直接证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验