Suppr超能文献

关于依赖tRNA的氨转移酶GatCAB和GatDE的进化

On the evolution of the tRNA-dependent amidotransferases, GatCAB and GatDE.

作者信息

Sheppard Kelly, Söll Dieter

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.

出版信息

J Mol Biol. 2008 Mar 28;377(3):831-44. doi: 10.1016/j.jmb.2008.01.016. Epub 2008 Jan 16.

Abstract

Glutaminyl-tRNA synthetase and asparaginyl-tRNA synthetase evolved from glutamyl-tRNA synthetase and aspartyl-tRNA synthetase, respectively, after the split in the last universal communal ancestor (LUCA). Glutaminyl-tRNA(Gln) and asparaginyl-tRNA(Asn) were likely formed in LUCA by amidation of the mischarged species, glutamyl-tRNA(Gln) and aspartyl-tRNA(Asn), by tRNA-dependent amidotransferases, as is still the case in most bacteria and all known archaea. The amidotransferase GatCAB is found in both domains of life, while the heterodimeric amidotransferase GatDE is found only in Archaea. The GatB and GatE subunits belong to a unique protein family that includes Pet112 that is encoded in the nuclear genomes of numerous eukaryotes. GatE was thought to have evolved from GatB after the emergence of the modern lines of decent. Our phylogenetic analysis though places the split between GatE and GatB, prior to the phylogenetic divide between Bacteria and Archaea, and Pet112 to be of mitochondrial origin. In addition, GatD appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, while GatDE is an archaeal signature protein, it likely was present in LUCA together with GatCAB. Archaea retained both amidotransferases, while Bacteria emerged with only GatCAB. The presence of GatDE has favored a unique archaeal tRNA(Gln) that may be preventing the acquisition of glutaminyl-tRNA synthetase in Archaea. Archaeal GatCAB, on the other hand, has not favored a distinct tRNA(Asn), suggesting that tRNA(Asn) recognition is not a major barrier to the retention of asparaginyl-tRNA synthetase in many Archaea.

摘要

谷氨酰胺-tRNA合成酶和天冬酰胺-tRNA合成酶分别是在最后一个普遍共同祖先(LUCA)分裂后,从谷氨酰-tRNA合成酶和天冬氨酰-tRNA合成酶进化而来的。在LUCA中,谷氨酰胺-tRNA(Gln)和天冬酰胺-tRNA(Asn)可能是由错配的谷氨酰-tRNA(Gln)和天冬氨酰-tRNA(Asn)通过tRNA依赖性酰胺转移酶酰胺化形成的,大多数细菌和所有已知古菌目前仍是这种情况。酰胺转移酶GatCAB存在于生命的两个域中,而异二聚体酰胺转移酶GatDE仅存在于古菌中。GatB和GatE亚基属于一个独特的蛋白质家族,该家族包括许多真核生物核基因组中编码的Pet112。人们认为GatE是在现代谱系出现后从GatB进化而来的。然而,我们的系统发育分析表明,GatE和GatB的分化发生在细菌和古菌的系统发育分化之前,并且Pet112起源于线粒体。此外,GatD似乎在细菌-古菌系统发育分化之前就已出现。因此,虽然GatDE是一种古菌标志性蛋白,但它可能与GatCAB一起存在于LUCA中。古菌保留了这两种酰胺转移酶,而细菌出现时仅含有GatCAB。GatDE的存在有利于一种独特的古菌tRNA(Gln),这可能阻止了古菌中谷氨酰胺-tRNA合成酶的获得。另一方面,古菌的GatCAB并不有利于一种独特的tRNA(Asn),这表明tRNA(Asn)识别不是许多古菌中天冬酰胺-tRNA合成酶保留的主要障碍。

相似文献

1
On the evolution of the tRNA-dependent amidotransferases, GatCAB and GatDE.关于依赖tRNA的氨转移酶GatCAB和GatDE的进化
J Mol Biol. 2008 Mar 28;377(3):831-44. doi: 10.1016/j.jmb.2008.01.016. Epub 2008 Jan 16.
2
Evolution and variation in amide aminoacyl-tRNA synthesis.酰胺基酰基-tRNA 合成的演变和变异。
IUBMB Life. 2024 Aug;76(8):505-522. doi: 10.1002/iub.2811. Epub 2024 Feb 23.

引用本文的文献

4
Unconventional genetic code systems in archaea.古菌中的非常规遗传密码系统。
Front Microbiol. 2022 Sep 8;13:1007832. doi: 10.3389/fmicb.2022.1007832. eCollection 2022.
8
On the Track of the Missing tRNA Genes: A Source of Non-Canonical Functions?追寻缺失的tRNA基因:非经典功能的来源?
Front Mol Biosci. 2021 Mar 16;8:643701. doi: 10.3389/fmolb.2021.643701. eCollection 2021.

本文引用的文献

1
Novel tRNA aminoacylation mechanisms.新型tRNA氨基酰化机制。
Mol Biosyst. 2007 Jun;3(6):408-18. doi: 10.1039/b618899k. Epub 2007 May 3.
6
Emergence of the universal genetic code imprinted in an RNA record.印刻在RNA记录中的通用遗传密码的出现。
Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18095-100. doi: 10.1073/pnas.0608762103. Epub 2006 Nov 16.
9
Collective evolution and the genetic code.集体进化与遗传密码。
Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10696-701. doi: 10.1073/pnas.0603780103. Epub 2006 Jul 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验