Suppr超能文献

Effect of cyclodextrin complexation on the in vivo disposition of the brain imaging radiopharmaceutical 99mTechnetium ethyl cysteinate dimer (99mTc-ECD).

作者信息

Oliver D W, Dormehl I C, Louw W, Kilian E, de Beco V, Morretti J L

机构信息

Faculty Health Sciences, Pharmacology, Potchefstroom University for Christian Higher Education, Potchefstroom, Republic of South Africa.

出版信息

Arzneimittelforschung. 2000 Aug;50(8):758-64. doi: 10.1055/s-0031-1300284.

Abstract

The brain imaging radiopharmaceutical, 99mTechnetium ethyl cysteinate dimer (99mTc-ECD, 99mTc-bicisate) is the most recent addition to the available set of radiopharmaceuticals for measuring cerebral blood flow. Ideally radiotracers should be trapped in the brain long enough so that their distribution can be quantitated and should demonstrate good spatial resolution. Furthermore, the stability (chemical and metabolic) and bioavailability of radiopharmaceuticals have in general proved to be a challenge during development and clinical administration. In view of these challenges and background, this study with 99mTc-ECD is presented. The aims of this research program were to develop novel approaches to improve the chemical and metabolic stability and the bioavailability of 99mTc-ECD across the blood brain barrier for cerebral blood flow determinations, using the well known non-human primate in vivo baboon model. These aims were addressed by investigating the influence of cyclodextrin--99mTc-ECD complexation on normal cerebral blood flow patterns, using two different cyclodextrins, i.e., gamma-cyclodextrin (CAS 17465-86-0) and beta-trimethylcyclodextrin (CAS 55216-11-0). The effect of incubation of 99mTc-ECD (with or without cyclodextrin complexation) in plasma, on metabolic esterase action, was also investigated. Possible protection against plasma esterase by acetylcholine (CAS 51-84-3) of 99mTc-ECD was further determined. The current study has shown that cyclodextrin complexation of 99mTc-ECD indeed offers a useful approach to improve the stability of the radiopharmaceutical against peripheral metabolism. The acetylcholine shows also potential to protect 99mTc-ECD. However, it is clear from the current data that the choice of cyclodextrin is of utmost importance, as has been observed from significantly reduced the bioavailability of 99mTc-ECD when complexed with beta-trimethylcyclodextrin. The plasma incubation procedures showed that gamma-cyclodextrin offers protection with only slightly reduced bioavailability. This study has indicated that novel approaches, such as cyclodextrin technologies, indeed show potential to modify the performance in its currently available 99mTc-ECD form.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验