Spanĕl P, Smith D
V. Cermák Laboratory, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, 182 23, Prague 8, Czech Republic.
Rapid Commun Mass Spectrom. 2000;14(20):1898-906. doi: 10.1002/1097-0231(20001030)14:20<1898::AID-RCM110>3.0.CO;2-G.
Selected ion flow tube mass spectrometry (SIFT-MS) detects and quantifies in real time the trace gases, M, in air/breath samples introduced directly into a flow tube. Inevitably, relatively large partial pressures of water vapour are introduced with the sample and the water molecules become involved in the ion chemistry on which this analytical technique depends. When H(3)O(+) ions are used as the precursors for chemical ionisation and SIFT mass spectrometric analyses of M, they generally result in the formation of MH(+) ions. Also, when water vapour is present the H(3)O(+) ions are partially converted to hydrated hydronium ions, H(3)O(+).(H(2)O)(1,2,3). The latter may act as precursor ions and produce new product ions like MH(+).(H(2)O)(1,2,3) via ligand switching and association reactions. This ion chemistry and the product ions that result from it must be accounted for in accurate analyses by SIFT-MS. In this paper we describe the results of a detailed SIFT study of the reactions involved in the quantification of acetone, ethyl acetate, diethyl ether, methanol, ethanol, ammonia and methyl cyanide by SIFT-MS in the presence of water vapour. This study was undertaken to provide the essential data that allows more accurate analyses of moist air and breath by SIFT-MS to be achieved. It is shown using our standard analysis procedure that the error of SIFT-MS quantification caused by the presence of water vapour is typically 15%. An improved analysis procedure is then presented that is shown to reduce this error to typically 2%. Additionally, some fundamental data have been obtained on the association reactions of protonated organic molecules, MH(+) ions, with water molecules forming MH(+).H(2)O monohydrate ions. For some types of M, reaction sequences occur that lead to the formation of dihydrate and trihydrate ions.
选择离子流管质谱法(SIFT-MS)可实时检测并定量分析直接引入流管的空气/呼吸样本中的痕量气体M。不可避免地,样本中会引入相对较高分压的水蒸气,水分子会参与到这种分析技术所依赖的离子化学过程中。当使用H₃O⁺离子作为化学电离的前体以及对M进行SIFT质谱分析时,它们通常会导致形成MH⁺离子。此外,当存在水蒸气时,H₃O⁺离子会部分转化为水合水合氢离子H₃O⁺·(H₂O)₁,₂,₃ 。后者可能作为前体离子,并通过配体交换和缔合反应产生新的产物离子,如MH⁺·(H₂O)₁,₂,₃ 。在SIFT-MS的精确分析中必须考虑这种离子化学及其产生的产物离子。在本文中,我们描述了一项详细的SIFT研究结果,该研究涉及在有水蒸气存在的情况下,通过SIFT-MS对丙酮、乙酸乙酯、乙醚、甲醇、乙醇、氨和乙腈进行定量分析时所涉及的反应。进行这项研究是为了提供必要的数据,以便能够通过SIFT-MS更准确地分析潮湿空气和呼吸气体。使用我们的标准分析程序表明,水蒸气的存在导致SIFT-MS定量分析的误差通常为15%。然后提出了一种改进的分析程序,结果表明该程序可将此误差降低至通常为2%。此外,还获得了一些关于质子化有机分子MH⁺离子与水分子形成MH⁺·H₂O一水合离子的缔合反应的基础数据。对于某些类型的M,会发生导致形成二水合离子和三水合离子的反应序列。