Suppr超能文献

基于片段贡献之和的分子极性表面积快速计算及其在药物转运性质预测中的应用。

Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties.

作者信息

Ertl P, Rohde B, Selzer P

机构信息

Cheminformatics, Novartis Pharma AG, WKL-490.4.35, CH-4002 Basel, Switzerland.

出版信息

J Med Chem. 2000 Oct 5;43(20):3714-7. doi: 10.1021/jm000942e.

Abstract

Molecular polar surface area (PSA), i.e., surface belonging to polar atoms, is a descriptor that was shown to correlate well with passive molecular transport through membranes and, therefore, allows prediction of transport properties of drugs. The calculation of PSA, however, is rather time-consuming because of the necessity to generate a reasonable 3D molecular geometry and the calculation of the surface itself. A new approach for the calculation of the PSA is presented here, based on the summation of tabulated surface contributions of polar fragments. The method, termed topological PSA (TPSA), provides results which are practically identical with the 3D PSA (the correlation coefficient between 3D PSA and fragment-based TPSA for 34 810 molecules from the World Drug Index is 0.99), while the computation speed is 2-3 orders of magnitude faster. The new methodology may, therefore, be used for fast bioavailability screening of virtual libraries having millions of molecules. This article describes the new methodology and shows the results of validation studies based on sets of published absorption data, including intestinal absorption, Caco-2 monolayer penetration, and blood-brain barrier penetration.

摘要

分子极性表面积(PSA),即属于极性原子的表面,是一种描述符,已被证明与药物通过膜的被动分子转运密切相关,因此可以预测药物的转运特性。然而,由于需要生成合理的三维分子几何结构以及计算表面本身,PSA的计算相当耗时。本文提出了一种计算PSA的新方法,该方法基于极性片段的表格化表面贡献之和。这种方法称为拓扑PSA(TPSA),其提供的结果与三维PSA几乎相同(来自世界药物索引的34810个分子的三维PSA与基于片段的TPSA之间的相关系数为0.99),而计算速度快2至3个数量级。因此,这种新方法可用于对数以百万计分子的虚拟库进行快速生物利用度筛选。本文描述了这种新方法,并展示了基于已发表的吸收数据(包括肠道吸收、Caco-2单层渗透和血脑屏障渗透)集的验证研究结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验