Shen A L, Kasper C B
McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706-1599, USA.
J Biol Chem. 2000 Dec 29;275(52):41087-91. doi: 10.1074/jbc.M008380200.
Transfer of reducing equivalents from NADPH to the cytochromes P450 is mediated by NADPH-cytochrome P450 oxidoreductase, which contains stoichiometric amounts of tightly bound FMN and FAD. Hydrogen bonding and van der Waals interactions between FAD and amino acid residues in the FAD binding site of the reductase serve to regulate both flavin binding and reactivity. The precise orientation of key residues (Arg(454), Tyr(456), Cys(472), Gly(488), Thr(491), and Trp(677)) has been defined by x-ray crystallography (Wang, M., Roberts, D. L., Paschke, R., Shea, T. M., Masters, B. S., Kim, J.-J. P. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8411-8416). The current study examines the relative contributions of these residues to FAD binding and catalysis by site-directed mutagenesis and kinetic analysis. Mutation of either Tyr(456), which makes van der Waals contact with the FAD isoalloxazine ring and also hydrogen-bonds to the ribityl 4'-hydroxyl, or Arg(454), which bonds to the FAD pyrophosphate, decreases the affinity for FAD 8000- and 25,000-fold, respectively, with corresponding decreases in cytochrome c reductase activity. In contrast, substitution of Thr(491), which also interacts with the pyrophosphate grouping, had a relatively modest effect on both FAD binding (100-fold decrease) and catalytic activity (2-fold decrease), while the G488L mutant exhibited, respectively, 800- and 50-fold decreases in FAD binding and catalytic activity. Enzymic activity of each of these mutants could be restored by addition of FAD. Kinetic properties and the FMN content of these mutants were not affected by these substitutions, with the exception of a 3-fold increase in Y456S K(m)(cyt )(c) and a 70% decrease in R454E FMN content, suggesting that the FMN- and FAD-binding domains are largely, but not completely, independent. Even though Trp(677) is stacked against the re-face of FAD, suggesting an important role in FAD binding, deletion of both Trp(677) and the carboxyl-terminal Ser(678) decreased catalytic activity 50-fold without affecting FAD content.
还原当量从NADPH转移至细胞色素P450是由NADPH - 细胞色素P450氧化还原酶介导的,该酶含有化学计量的紧密结合的FMN和FAD。还原酶的FAD结合位点中FAD与氨基酸残基之间的氢键和范德华相互作用有助于调节黄素的结合和反应活性。关键残基(Arg(454)、Tyr(456)、Cys(472)、Gly(488)、Thr(491)和Trp(677))的精确取向已通过X射线晶体学确定(Wang, M., Roberts, D. L., Paschke, R., Shea, T. M., Masters, B. S., Kim, J.-J. P. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8411 - 8416)。本研究通过定点诱变和动力学分析来研究这些残基对FAD结合和催化的相对贡献。与FAD异咯嗪环有范德华接触且还与核醇4'-羟基形成氢键的Tyr(456)或与FAD焦磷酸键合的Arg(454)发生突变,分别使对FAD的亲和力降低8000倍和25000倍,同时细胞色素c还原酶活性相应降低。相比之下,同样与焦磷酸基团相互作用的Thr(491)被取代,对FAD结合(降低100倍)和催化活性(降低2倍)的影响相对较小,而G488L突变体的FAD结合和催化活性分别降低了800倍和50倍。这些突变体中的每一个的酶活性都可以通过添加FAD来恢复。这些突变体的动力学性质和FMN含量不受这些取代的影响,但Y456S的K(m)(cyt )(c)增加了3倍,R454E的FMN含量降低了70%,这表明FMN和FAD结合结构域在很大程度上但并非完全独立。尽管Trp(677)与FAD的反式面堆叠,表明其在FAD结合中起重要作用,但Trp(677)和羧基末端的Ser(678)缺失使催化活性降低了50倍,而不影响FAD含量。