Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13486-91. doi: 10.1073/pnas.1106632108. Epub 2011 Aug 1.
NADPH-cytochrome P450 oxidoreductase (CYPOR) is essential for electron donation to microsomal cytochrome P450-mediated monooxygenation in such diverse physiological processes as drug metabolism (approximately 85-90% of therapeutic drugs), steroid biosynthesis, and bioactive metabolite production (vitamin D and retinoic acid metabolites). Expressed by a single gene, CYPOR's role with these multiple redox partners renders it a model for understanding protein-protein interactions at the structural level. Polymorphisms in human CYPOR have been shown to lead to defects in bone development and steroidogenesis, resulting in sexual dimorphisms, the severity of which differs significantly depending on the degree of CYPOR impairment. The atomic structure of human CYPOR is presented, with structures of two naturally occurring missense mutations, V492E and R457H. The overall structures of these CYPOR variants are similar to wild type. However, in both variants, local disruption of H bonding and salt bridging, involving the FAD pyrophosphate moiety, leads to weaker FAD binding, unstable protein, and loss of catalytic activity, which can be rescued by cofactor addition. The modes of polypeptide unfolding in these two variants differ significantly, as revealed by limited trypsin digestion: V492E is less stable but unfolds locally and gradually, whereas R457H is more stable but unfolds globally. FAD addition to either variant prevents trypsin digestion, supporting the role of the cofactor in conferring stability to CYPOR structure. Thus, CYPOR dysfunction in patients harboring these particular mutations may possibly be prevented by riboflavin therapy in utero, if predicted prenatally, or rescued postnatally in less severe cases.
NADPH-细胞色素 P450 氧化还原酶 (CYPOR) 对于微粒体细胞色素 P450 介导的单加氧酶作用中电子的供体至关重要,这种作用存在于多种生理过程中,如药物代谢(约 85-90%的治疗药物)、类固醇生物合成和生物活性代谢产物的产生(维生素 D 和视黄酸代谢物)。CYPOR 由单个基因表达,其与多种氧化还原伴侣的作用使其成为理解蛋白质-蛋白质相互作用结构水平的模型。人类 CYPOR 的多态性已被证明导致骨骼发育和类固醇生成缺陷,导致性别二态性,其严重程度因 CYPOR 损伤程度而异。本文呈现了人类 CYPOR 的原子结构,以及两种天然存在的错义突变 V492E 和 R457H 的结构。这些 CYPOR 变体的整体结构与野生型相似。然而,在这两种变体中,涉及 FAD 焦磷酸部分的局部氢键和盐桥的破坏导致 FAD 结合较弱、蛋白质不稳定和催化活性丧失,这些可以通过添加辅因子来挽救。通过有限的胰蛋白酶消化揭示,这两种变体中的多肽展开方式存在显著差异:V492E 不太稳定但局部和逐渐展开,而 R457H 更稳定但全局展开。FAD 加至任一种变体都可防止胰蛋白酶消化,支持辅因子在赋予 CYPOR 结构稳定性方面的作用。因此,如果这些特定突变的患者存在 CYPOR 功能障碍,在产前预测的情况下,通过核黄素治疗,或在较轻的病例中通过产后挽救,可能会防止这种障碍。